

PISO-CAN200/400
PISO-CAN100U/200U/400U/800U

PEX-CAN200i
PCM-CAN100/200/200P

User’s Manual

Warranty

All products manufactured by ICP DAS are warranted against
defective materials for a period of one year from the date of delivery to the
original purchaser.

Warning

ICP DAS assume no liability for damages consequent to the use of
this product. ICP DAS reserves the right to change this manual at any time
without notice. The information furnished by ICP DAS is believed to be
accurate and reliable. However, no responsibility is assumed by ICP DAS
for its use, nor for any infringements of patents or other rights of third
parties resulting from its use.

Copyright

Copyright 2003 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe registered trademarks
of their respective companies.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 1

Tables of Content
1 General Information..4

1.1 Introduction ..4
1.2 Features..5
1.3 Hardware Specifications ...6

1.3.1 PCM-CAN100/200/200P ..6
1.3.2 PEX-CAN200i ..7
1.3.3 PISO-CAN200/200U ..8
1.3.4 PISO-CAN400/400U ..9
1.3.5 PISO-CAN100U ...10
1.3.6 PISO-CAN800U ... 11

1.4 Product Check List ..12
2 Hardware Configuration...13

2.1 Board Layout..13
2.2 Jumper Selection ...18
2.3 Connector Pin Assignment ...22

2.3.1 5-pin screw terminal connector22
2.3.2 9-pin male D-sub connectors ..23
2.3.3 37-pin female D-sub connectors24

2.4 Installation ..25
3 Software Installation...26
4 Installation DLL Driver..29

4.1 DLL Function Definition and Description31
4.1.1 CAN_GetDllVersion ..34
4.1.2 CAN_TotalBoard ...34
4.1.3 CAN_GetBoardInf ...35
4.1.4 CAN_GetCardPortNum ..36
4.1.5 CAN_ActiveBoard ..37
4.1.6 CAN_CloseBoard ...38
4.1.7 CAN_BoardIsActive..39
4.1.8 CAN_Reset..40
4.1.9 CAN_Init ..41
4.1.10 CAN_Config ..42
4.1.11 CAN_ConfigWithoutStructure44
4.1.12 CAN_EnableRxIrq...46
4.1.13 CAN_DisableRxIrq..47
4.1.14 CAN_RxIrqStatus..48

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 2

4.1.15 CAN_InstallIrq...49

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 3

4.1.16 CAN_RemoveIrq ...50
4.1.17 CAN_IrqStatus ..51
4.1.18 CAN_Status...52
4.1.19 CAN_SendMsg..53
4.1.20 CAN_SendWithoutStruct ...54
4.1.21 CAN_RxMsgCount ...55
4.1.22 CAN_ReceiveMsg ...56
4.1.23 CAN_ReceiveWithoutStruct...58
4.1.24 CAN_ClearSoftBuffer ...60
4.1.25 CAN_ClearDataOverrun ...61
4.1.26 CAN_OutputByte ..62
4.1.27 CAN_InputByte ...63
4.1.28 CAN_GetSystemFreq ...64
4.1.29 CAN_InstallUserIsr (only for Windows 2000/XP)65
4.1.30 CAN_RemoveUserIsr (only for Windows 2000/XP)......66
4.1.31 CAN_BusErrorCode ...67

4.2 Flow Diagram for Application ...69
5 Demo Programs for Windows..72
6 CANUtility Program for Windows..75
7 Appendix ...81

7.1 Acceptance Filtering..81
8 Dimensions ...84

8.1 PISO-CAN200/400 ..84
8.2 PISO-CAN100U/200U/400U/800U ..85
8.3 PEX-CAN200i..88
8.4 PCM-CAN100/200/200P..89

1 General Information

1.1 Introduction

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 4

The CAN (Controller Area Network) is a serial communication protocol,
which efficiently supports distributed real-time control with a very high level of
security. It is especially suited for networking "intelligent" devices as well as
sensors and actuators within a system or sub-system. In CAN networks, there
is no addressing of subscribers or stations in the conventional sense, but
instead prioritized messages are transmitted. As a stand-alone CAN controller,
PISO-CAN, PEX-CAN, and PCM-CAN represents an economic solution within
which an active CAN board can have two or four independent CAN bus
communication ports with either a 5-pin screw terminal connector or a 9-pin
D-sub connector. It can be a master/slave interface, and be applied in various
CAN applications. In addition, these CAN cards use the new NXP SJA1000T
and transceiver 82C250/251, which provide the bus arbitration and error
detection. The differences between these CAN cards are the interface of PC.
Some are for PCI interface, some are for PCI Express interface, and some are
for PCI-104 interface. To get the detail information for the features and the
specification of these CAN cards, please refer to the section 1.2 and 1.3.

1.2 Features
z PCI BUS interface

z 2500Vrms photo-isolation protection

z 1/2/4/8 independent CAN communication ports

z Compatible with CAN specification 2.0 parts A and B

z On-board optical isolation protection

z Programmable transfer-rate up to 1 Mbps

z Jumper select 120Ω terminator resistor for each port

z Direct memory mapping to the CAN controllers

z PISO-CAN200/400

� 33MHz 32bit 5V PCI bus (V2.1) plug and play technology

� PCI card, supports 5V PCI bus

� 3KV galvanic isolation

� 2/4 independent CAN channels for PISO-CAN200/400

z PISO-CAN100U/200U/400U/800U

� PCI v2.2 compliant 32-bit 33MHz

� Universal PCI card, supports both 5V and 3.3V PCI bus

� 3KV galvanic isolation

� 1/2/4/8 independent CAN channels for PISO-CAN100U/200U/400U/800U

z PEX-CAN200i

� 32-bit, 33MHz, X1 PCI Express Bus

� According to PCI Express specification R1.0

� 3KV galvanic isolation

� 2 independent CAN channels

z PCM-CAN100/200/200P

� PCI104 compliant

� 9-pin D-sub connector

� 1KV galvanic isolation

� 1/2 independent CAN channels

z Driver supported for Windows 2000/XP/7, Linux 2.6.x ~ 3.2.20

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 5

1.3 Hardware Specifications

1.3.1 PCM-CAN100/200/200P

Model Name PCM-CAN100-D PCM-CAN200-D PCM-CAN200P-D

Bus Interface

Type PCI-104 PC-104+

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP 82C250

Channel
number

1 2

Connector

9-pin female and
male D-Sub
(CAN_L,
CAN_SHLD,
CAN_H, N/A for
others)

9-pin male D-Sub (CAN_L, CAN_SHLD,
CAN_H, N/A for others)

Baud Rate
(bps)

10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow
user-defined baud rate)

Terminator
Resistor

Jumper for 120 Ω terminator resistor

Power

Power
Consumption

250 mA @ 5 V

Mechanism

Dimensions 91mm x 22mm x 96mm (W x L x H)

Environment

Operating
Temp.

0 ~ 60 ℃

Storage
Temp.

-20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 6

1.3.2 PEX-CAN200i

Model Name PEX-CAN200i-D PEX-CAN200i-T

Bus Interface

Type 33 MHz, 32 bit, X1 PCI Express bus

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP 82C250

Channel number 2

Connector 9-pin male D-Sub 5-pin screwed terminal block

Baud Rate (bps)
10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow
user-defined baud rate)

Terminator
Resistor

Jumper for 120 Ω terminator resistor

Power

Power
Consumption

100 mA @ 12 V, 100 mA @ 3.3 V

Mechanism

Dimensions 120mm x 22mm x 85mm (W x L x H)

Environment

Operating Temp. 0 ~ 60 ℃

Storage Temp. -20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 7

http://www.icpdas.com/products/Remote_IO/can_bus/piso-can200e.htm#top

1.3.3 PISO-CAN200/200U

Model Name PISO-CAN200-D PISO-CAN200-T PISO-CAN200U-D PISO-CAN200U-T

Bus Interface

Type
PCI bus, 5 V, 33 MHz, 32-bit, plug
and play

Universal PCI, 3.3 V and 5 V, 33 MHz,
32-bit, plug and play

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP 82C250

Channel
number

2

Connector
9-pin male

D-Sub
5-pin screwed
terminal block

9-pin male D-Sub
5-pin screwed
terminal block

Baud Rate
(bps)

10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M
(allow user-defined baud rate)

Terminator
Resistor

Jumper for 120 Ω terminator resistor

Power

Power
Consumption

250 mA @ 5 V

Mechanism

Dimensions 126mm x 22mm x 85mm (W x L x H)

Environment

Operating
Temp.

0 ~ 60 ℃

Storage
Temp.

-20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 8

1.3.4 PISO-CAN400/400U

Model Name PISO-CAN400U-D PISO-CAN400U-T PISO-CAN400U-D PISO-CAN400U-T

Bus Interface

Type
PCI bus, 5 V, 33 MHz, 32-bit, plug
and play

Universal PCI, 3.3 V and 5 V, 33 MHz,
32-bit, plug and play

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP 82C250

Channel
number

4

Connector 9-pin male D-Sub
5-pin screwed
terminal block

9-pin male D-Sub
5-pin screwed
terminal block

Baud Rate
(bps)

10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow user-defined baud
rate)

Terminator
Resistor

Jumper for 120 Ω terminator resistor

Power

Power
Consumption

300 mA @ 5 V

Mechanism

Dimensions 126mm x 22mm x 85mm (W x L x H)

Environment

Operating
Temp.

0 ~ 60 ℃

Storage
Temp.

-20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 9

1.3.5 PISO-CAN100U

Model Name PISO-CAN100U-D PISO-CAN100U-T

Bus Interface

Type
Universal PCI, 3.3 V and 5 V, 33 MHz, 32-bit, plug and
play

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP 82C250

Channel number 1

Connector 9-pin male D-Sub 5-pin screwed terminal block

Baud Rate (bps)
10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow
user-defined baud rate)

Terminator
Resistor

Jumper for 120 Ω terminator resistor

Power

Power
Consumption

225 mA @ 5 V

Mechanism

Dimensions 126mm x 22mm x 85mm (W x L x H)

Environment

Operating Temp. 0 ~ 60 ℃

Storage Temp. -20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 10

1.3.6 PISO-CAN800U

Bus Interface

Type Universal PCI, 3.3 V and 5 V, 33 MHz, 32-bit, plug and play

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP TJA1042

Channel number 8

Connector Female DB-37 x 2

Baud Rate (bps)
10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow
user-defined baud rate)

Terminator
Resistor

Jumper for 120 Ω terminator resistor

Power

Power
Consumption

800 mA @ 5 V

Mechanism

Dimensions 193mm x 22mm x 93mm (W x L x H)

Environment

Operating Temp. 0 ~ 60 ℃

Storage Temp. -20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 11

1.4 Product Check List

Besides this manual, the package includes the following items:

� Hardware of PISO-CAN or PEX-CAN or PCM-CAN CAN card

� ADP-9 Board (for PISO-CAN400/PISO-CAN400U only)

� Software CD ROM

It is recommended that users read the release note first. All the
important information needed will be provided in the release note as
follows:

� Where you can find the software driver, utility and demo programs.

� How to install software & utility.

� Where is the diagnostic program?

� FAQ’s and answers.

Attention!

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 12

If any of these items are missing or damaged, please contact your local
field agent. Keep aside the shipping materials and carton in case you want to
ship or store the product in the future.

2 Hardware Configuration

 This section will describe the hardware settings of the PISO-CAN,
PEX-CAN, and PCM-CAN series CAN card. This information includes the wire
connection and terminal resistance configuration for the CAN network.

2.1 Board Layout

Figure2.1 PISO-CAN200 Board LAYOUT

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 13

Figure2.2 PISO-CAN400 Board LAYOUT

Figure2.3 PISO-CAN100U Board LAYOUT

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 14

Figure2.4 PISO-CAN200U Board LAYOUT

Figure2.5 PISO-CAN400U Board LAYOUT

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 15

Figure2.6 ADP-9 Board LAYOUT (For PISO-CAN400/400U Only)

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 16

Figure2.7 PISO-CAN800U Board LAYOUT

Figure2.8 PEX-CAN200i Board LAYOUT

Figure2.9 PCM-CAN200 Board LAYOUT

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 17

PEX-CAN200i

2.2 Jumper Selection

PISO-CAN200400

Table 2.1 Jumper Selections

Jumper Description Status

JP1
CAN Port 3 Connector,

connecting PISO-CAN400
board and ADP-9 board.

JP1

1 2 3

JP1
1
2
3

Pin1: CAN_L

Pin2: CAN_H

Pin3: Shield

JP2
CAN Port 4 Connector,

connecting PISO-CAN400
board and ADP-9 board.

JP2

1 2 3

JP2
1
2
3

Pin1: CAN_L

Pin2: CAN_H

Pin3: Shield

Enable Disable
JP6 Port 1 terminator

resister(120Ω) selection
1 2 3 1 2 3

JP7 Port 2 terminator
resister(120Ω) selection 1 2 3 1 2 3

JP8 Port 3 terminator
resister(120Ω) selection 1 2 3 1 2 3

JP9 Port 4 terminator
resister(120Ω) selection 1 2 3 1 2 3

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 18

PISO-CAN100U/200U/400U

Table 2.2 Jumper Selections

Jumper Description Status

JP5
CAN Port 3 Connector,

connecting PISO-CAN400U
board and ADP-9 board.

JP5

1 2 3

JP5
1
2
3

Pin1: CAN_L

Pin2: CAN_H

Pin3: Shield

JP7
CAN Port 4 Connector,

connecting PISO-CAN400U
board and ADP-9 board.

JP7

1 2 3

JP7
1
2
3

Pin1: CAN_L

Pin2: CAN_H

Pin3: Shield

Enable Disable
JP2 Port 1 terminator resister(120Ω)

selection
3 2 1 3 2 1

JP3
Port 2 terminator resister(120Ω)

selection
(only for PISO-CAN200U/400U) 3 2 1 3 2 1

JP4
Port 3 terminator resister(120Ω)

selection
(only for PISO-CAN400U) 3 2 1 3 2 1

JP6
Port 4 terminator resister(120Ω)

selection 3 2 1 (only for PISO-CAN400U)

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 19

3 2 1

PISO-CAN800U

Table 2.3 Jumper Selections

Jumper Description Status

Enable Disable
Port 1 terminator

resister(120Ω) selection

JP2

Port 2 terminator
resister(120Ω) selection

JP3

Port 4 terminator
resister(120Ω) selection

JP4

Port 3 terminator
resister(120Ω) selection

JP5

Port 5 terminator
resister(120Ω) selection

JP6

Port 6 terminator
resister(120Ω) selection

JP7

Port 8 terminator
resister(120Ω) selection

JP8

Port 7 terminator
resister(120Ω) selection JP9

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 20

PEX-CAN200i-D/T

Table 2.4 Jumper Selections

Jumper Description Status

Enable Disable
Port 1 terminator

resister(120Ω) selection
1 2 3 1 2 3

JP2

Port 2 terminator
resister(120Ω) selection JP3 1 2 3 1 2 3

PCM-CAN100 and PCM-CAN200

Table 2.5 shows the appropriate switch setting and signals used for each
module in the stack.

Table 2.5 Rotary Switch Settings

Switch Position Module Slot CLK ID Select INT
0 or 4 or 8 1 CLK0 IDSEL0 INTA
1 or 5 or 9 2 CLK1 IDSEL1 INTB
2 or 6 3 CLK2 IDSEL2 INTC
3 or 7 4 CLK3 IDSEL3 INTD

Table 2.6 Jumper Selections

Jumper Description Status

Enable Disable
JP3 Port 1 terminator

resister(120Ω) selection
3 2 1 3 2 1

JP4
3 2 1 3 2 1

Port 2 terminator
resister(120Ω) selection (only for

PCM-CAN200)

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 21

2.3 Connector Pin Assignment

The PISO-CAN200/400-T and PISO-CAN100U/200U/400U-T, and

PEX-CAN200i-T are equipped with 1/2/4 sets of 5-pin screw terminal
connectors, the PISO-CAN200/400-D and PISO-CAN100U/200U/400U-D,
PEX-CAN200i-D and PCM-CAN100/200 are equipped with 1/2/4 sets of 9-pin
male D-sub connectors for wire connection of the CAN bus. And the
PISO-CAN800U is equipped with 2 sets of female DB-37 connector. Via the
CA-9-3715D/CA-9-3705 cable, user can convert the female DB-37 connector
to 9-pin male D-sub connectors. The connector’s pin assignment is specified
as follows:

2.3.1 5-pin screw terminal connector

The 5-pin screw terminal connector of the CAN bus interface is shown in
Figure 2.8. The details for the pin assignment are presented in Table 2.7.

Figure2.9 5-pin screw terminal connector

Table 2.7 Pin assignment of 5-pin screw terminal connector

5-pin screw terminal connectors pin
assignment

CAN_GND 1
CAN_L 2

CAN_SHLD 3
CAN_H 4

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 22

5 Reserved

2.3.2 9-pin male D-sub connectors

The 9-pin male D-sub connector of the CAN bus interface is shown in
Figure 2.9 and the corresponding pin assignments are given in Table 2.8.

Figure2.10 9-pin male D-sub connector

Table 2.8 Pin assignment of the 9-pin male D-sub connector

D-sub male connector pin
assignment

Reserved 1
CAN_L 2

CAN_GND 3
Reserved 4

CAN_SHLD 5
Reserved 6
CAN_H 7

Reserved 8
Reserved 9

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 23

2.3.3 37-pin female D-sub connectors

CA-9-3715D/CA-9-3705 DB-37 to DB-9 Pin Assignment
for PISO-CAN800U (CON1)

DB-37 Pin Assignment for PISO-CAN800U (CON2)

CON2
1 DB-37_Pin01 2 DB-37_Pin20
3 DB-37_Pin02 4 DB-37_Pin21
5 DB-37_Pin03 6 DB-37_Pin22
7 DB-37_Pin04 8 DB-37_Pin23
9 DB-37_Pin05 10 DB-37_Pin24
11 DB-37_Pin06 12 DB-37_Pin25
13 DB-37_Pin07 14 DB-37_Pin26
15 DB-37_Pin08 16 DB-37_Pin27
17 DB-37_Pin09 18 DB-37_Pin28
19 DB-37_Pin10 20 DB-37_Pin29
21 DB-37_Pin11 22 DB-37_Pin30
23 DB-37_Pin12 24 DB-37_Pin31
25 DB-37_Pin13 26 DB-37_Pin32
27 DB-37_Pin14 28 DB-37_Pin33
29 DB-37_Pin15 30 DB-37_Pin34
31 DB-37_Pin16 32 DB-37_Pin35
33 DB-37_Pin17 34 DB-37_Pin36
35 DB-37_Pin18 36 DB-37_Pin37
37 DB-37_Pin19 38 N.C.
39 N.C. N.C. 40

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 24

2.4 Installation

1. Configure the jumper settings on your PISO-CAN/PEX-CAN/PCM-CAN
in accordance with your particular requirements.

2. Shutdown your system and take off the chassis of your machine.
3. Plug in your PISO-CAN, PEX-CAN, or PCM-CAN series CAN card into

a suitable empty PCI slot.
4. Replace your chassis.
5. Plug your CAN bus cable(s) into the 5-pin screw terminal connector or

the 9-pin D-sub connector.
6. When the hardware installation is complete, please turn on the

computer again.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 25

3 Software Installation

The driver of PISO-CAN or PCM-CAN can be used in 2K/XP/7 Windows
environments. Users can find the driver in the path of
“\CAN\PCI\PCM_PISO-CAN_series\driver\” in the Fieldbus_CD. Execute the
PISO-CAN.exe file to start install the driver.

Install the PISO-CAN or PCM-CAN card driver

Step 1: Insert the product CD into the CD-ROM and find the path \
CAN\PCI\ PCM_PISO-CAN_series\Driver\win2k_xp_7\ (ex: the OS is
Windows 2000/XP/7). Then execute the PISO-CAN.exe to install the
PISO-CAN card driver.

Step 2: Click “Next” to start the PISO-CAN installation.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 26

Step 3: Select the folder where the PISO-CAN setup would be installed
and click “Next” button to continue.

Step 4: Click the button “Install” to continue.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 27

Step 5: Finally, restart the computer to complete the installation.

When finishing the installation. The PISO-CAN folder would be found at
the Start menu shown as below.

Remove the PISO-CAN driver

If the PISO-CAN driver is not used any more, users can click the “Uninstall” to
remove the PISO-CAN driver below.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 28

4 Installation DLL Driver

Windows DLL Driver
The DLL driver is the collection of function calls on the PISO-CAN,

PEX-CAN and PCM-CAN series cards used for Windows 2000/XP/7 systems.

The application structure is presented in the following figure. The user

application programs which have been developed by the following designated

tools: VB, VC, Delphi and Borland C++ Builder…etc, can call the

PISOCAN.DLL driver in user mode. And then the DLL driver will bypass the

function call into the KP_CAN.sys to access the hardware system, as shown in

the following Figure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 29

RTX Driver

In order to satisfy the users to apply the RTX system, ICPDAS provides
the RTX driver for PISO-CAN series CAN card. If users want to combine the
CAN communication interface in their time-critical system, the RTX driver of
the PISO-CAN series CAN cards can help them to do this easily and quickly.
Furthermore, the name and parameters of the APIs in the RTX driver are the
same as in the Windows driver. Users don’t need to pay more efforts to study
how to use the APIs of the RTX driver if they have used the Windows driver
before. The RTX driver increases the additional worth of the PISO-CAN series
CAN cards, and satisfies the users to get the highly real-time system. By owing
to the feature of high price performance and highly real-time, PISO-CAN series
CAN cards will be applied in more wide and more variant CAN applications.

Features：
1. The name and parameters of the APIs in RTX driver are the same as

them in the Windows driver. Users don’t need to learn the new usage
if they have used the PISO-CAN series CAN card before

2. If the PISO-CAN series CAN card can get the independent IRQ, it
supports interrupt function

3. Direct I/O control and highly real-time feature
4. Support Windows2000 SP4, and Windows XP SP2 OS
5. Support RTX version 8.1 and 2011

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 30

Notes:
Before execute PISO-CAN series RTX API, user need to execute the
“pisocan_rtx.rtss” file first.

4.1 DLL Function Definition and Description

All the functions provided in the PISO-CAN, PEX-CAN, or PCM-CAN
(hereinafter referred to as PISO-CAN) are listed in the following table and
detailed information for every function is presented in the following sub-section.
However, in order to make the descriptions more simplified and clear, the
attributes for the both the input and output parameter functions are given as
[input] and [output] respectively, as shown in following table.

Keyword Set parameter by user before
calling this function?

Get the data from this parameter
after calling this function?

[input] Yes No

[output] No Yes

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 31

Table 4.1 DLL function definition

Function definition Section
WORD CAN_GetDllVersion(); 4.1.1
int CAN_TotalBoard(); 4.1.2
int CAN_GetBoardInf(BYTE BoardNo, DWORD *dwVID, DWORD *dwDID,

DWORD *dwSVID, DWORD *dwSDID, DWORD
*dwIrqNo);

4.1.3

int CAN_GetCardPortNum(BYTE BoardNo, BYTE *bGetPortNum); 4.1.4
int CAN_ActiveBoard(BYTE wBoardNo) 4.1.5
int CAN_CloseBoard(BYTE wBoardNo); 4.1.6
int CAN_BoardIsActive(BYTE BoardNo); 4.1.7
int CAN_Reset(BYTE BoardNo, BYTE Port); 4.1.8
int CAN_Init(BYTE wBoardNo, BYTE Port); 4.1.9
int CAN_Config(BYTE BoardNo, BYTE Port, ConfigStruct *CanConfig); 4.1.10
int CAN_ConfigWithoutStructure(BYTE BoardNo, BYTE Port, DWORD
AccCode, DWORD AccMask, BYTE BaudRate, BYTE BT0, BYTE BT1); 4.1.11

int CAN_EnableRxIrq(BYTE BoardNo ,BYTE Port); 4.1.12
int CAN_DisableRxIrq(BYTE BoardNo, BYTE Port); 4.1.13
int CAN_RxIrqStatus(BYTE BoardNo, BYTE Port, BYTE *bStatus); 4.1.14
int CAN_InstallIrq(BYTE BoardNo); 4.1.15
int CAN_RemoveIrq(BYTE BoardNo); 4.1.16
int CAN_IrqStatus(BYTE BoardNo, BYTE *bStatus); 4.1.17
int CAN_Status(BYTE BoardNo, BYTE Port, BYTE *bStatus); 4.1.18
int CAN_SendMsg(BYTE BoardNo, BYTE Port, PacketStruct *CanPacket); 4.1.19
int CAN_SendWithoutStruct(BYTE BoardNo, BYTE Port, BYTE Mode,

DWORD Id, BYTE Rtr, BYTE Dlen, BYTE *Data) 4.1.20

int CAN_RxMsgCount(BYTE BoardNo, BYTE Port); 4.1.21
int CAN_ReceiveMsg(BYTE BoardNo, BYTE Port, PacketStruct *CanPacket); 4.1.22
int CAN_ReceiveWithoutStruct(BYTE BoardNo, BYTE Port, BYTE *Mode,

DWORD *Id, BYTE *Rtr, BYTE *Dlen, BYTE
*Data, LONGLONG *MsgTimeStamps);

4.1.23

int CAN_ClearSoftBuffer(BYTE BoardNo, BYTE Port); 4.1.24
int CAN_ClearDataOverrun(BYTE BoardNo, BYTE Port); 4.1.25
void CAN_OutputByte(BYTE BoardNo, BYTE Port, WORD wOffset, BYTE

bValue); 4.1.26

BYTE CAN_InputByte(BYTE BoardNo, BYTE Port, WORD wOffset); 4.1.27
LONGLONG CAN_GetSystemFreq(void); 4.1.28
Int CAN_InstallUserIsr(BYTE BoardNo, void(*UserISR)(BYTE BoardNo)); 4.1.29
Int CAN_RemoveUserIsr(BYTE BoardNo); 4.1.30
int CAN_BusErrorCode(BYTE BoardNo, BYTE Port, BYTE *bErrorCode);

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 32

4.1.31

Table 4.2 Interpretation of the return code

Return Code Error ID Comment

0 CAN_NoError OK

1 CAN_DriverError Driver error

2 CAN_ActiveBoardError This board can’t be activated.

3 CAN_BoardNumberError The board number exceeds the
maximum board number (7).

4 CAN_PortNumberError The port number exceeds the
maximum port number.

5 CAN_ResetError CAN chip hardware reset error

6 CAN_SoftResetError CAN chip software reset error

7 CAN_InitError CAN chip initiation error

8 CAN_ConfigError CAN chip configure error

9 CAN_SetACRError Set to Acceptance Code Register
error

10 CAN_SetAMRError Set to Acceptance Mask Register
error

11 CAN_SetBaudRateError Set Baud Rate error

12 CAN_EnableRxIrqFailure Enable CAN chip receive interrupt
failure

13 CAN_DisableRxIrqFailure Disable CAN chip receive interrupt
failure

14 CAN_InstallIrqFailure Installing PCI board IRQ failure

15 CAN_RemoveIrqFailure Removing PCI board IRQ failure

16 CAN_TransmitBufferLocked Transmit buffer in CAN chip is
locked

17 CAN_TransmitIncomplete Previously transmission is not yet
completed

18 CAN_ReceiveBufferEmpty CAN chip RXFIFO is empty

19 CAN_DataOverrun
Data was lost because there was
not enough space in CAN chip
RXFIFO

20 CAN_ReceiveError Receive data is not completed

21 CAN_SoftBufferIsEmpty Software buffer in driver is empty

22 CAN_SoftBufferIsFull Software buffer in driver is full

23 CAN_TimeOut Function no response and timeout

CAN_InstallIsrError 24

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 33

Installing user ISR failure

4.1.1 CAN_GetDllVersion

z Description:

Obtain the version information of PISOCAN.dll driver.

z Syntax:

WORD CAN_GetDllVersion(viod)

z Parameter:

None

z Return:

DLL version information. For example: If 101(hex) is return, it means
driver version is 1.01.

4.1.2 CAN_TotalBoard

z Description:

Obtain the amount of all CAN boards installed in the PCI bus.

z Syntax:

int CAN_TotalBoard(void)

z Parameter:

None

z Return:

Return the amount of all board.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 34

4.1.3 CAN_GetBoardInf
z Description:

Obtain the information of PISO-CAN boards, which include vender ID,
device ID and interrupt number.

z Syntax:

int CAN_GetBoardInf(BYTE BoardNo, DWORD *dwVID, DWORD
*dwDID, DWORD *dwSVID,DWORD *dwSDID, DWORD *dwSAuxID,
DWORD *dwIrqNo)

z Parameter:

BoardNo: [input] PISO-CAN board number
*dwVID: [output] vendor ID of this board
*dwDID: [output] device ID of this board
*dwSVID: [output] sub-vendor ID of this board
*dwSDID: [output] sub-device ID of this board
*dwSAuxID: [output] sub-auxiliary ID of this board
*dwIrq: [output] logical interrupt number of this board

z Return:
CAN_NoError: OK
CAN_DriverError: Kernel driver can not be opened.
CAN_BoardNumberError: BoardNo exceeds the current total board

number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 35

4.1.4 CAN_GetCardPortNum
z Description:

Call this function to Get CAN port number of the PISO-CAN card.

z Syntax:

int CAN_GetCardPortNum(BYTE BoardNo, BYTE *bGetPortNum)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
* bGetPortNum: [output] Port number of the CAN card

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can not be opened.
CAN_BoardNumberError: BoardNo exceeds the current total board

number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 36

4.1.5 CAN_ActiveBoard

z Description:

Activate the device. It must be called once before using other

functions of PISO-CAN board.

z Syntax:

int CAN_ActiveBoard(BYTE BoardNo)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).

z Return:
CAN_NoError: OK

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 37

CAN_BoardNumberError: BoardNo exceeds the current total board
number.

CAN_ActiveBoardError: This board can not be activated or kernel driver
can not be found.

4.1.6 CAN_CloseBoard

z Description:

Stop and close the kernel driver and release the device resource from

computer device resource. This method must be called once before

exiting the user’s application program.

z Syntax:

int CAN_CloseBoard(BYTE BoardNo)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).

z Return:
CAN_NoError: OK
CAN_ActiveBoardError: The board is not activated
CAN_BoardNumberError: BoardNo exceeds the current total board

number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 38

4.1.7 CAN_BoardIsActive

z Description:

Obtain the information about the specific board is active or not.

z Syntax:

int CAN_BoardIsActive(BYTE BoardNo)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).

z Return:

0: means the board is inactive.
1: means the board is active.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 39

4.1.8 CAN_Reset

z Description:

Hardware reset CAN controller.

z Syntax:

int CAN_Reset(BYTE BoardNo, BYTE Port)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 40

4.1.9 CAN_Init
z Description:

Initiate CAN controller.

z Syntax:

int CAN_Init(BYTE BoardNo, BYTE Port)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_InitError: Initiating CAN controller failure

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 41

4.1.10 CAN_Config
z Description:

Configure CAN controller. After calling this function, the CAN controller
will enter operating mode.

z Syntax:

int CAN_Config(BYTE BoardNo, BYTE Port,ConfigStruct *CanConfig);

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)
*ConfigStruct: [input] The point of structure for ConfigStruct is defined as

following,
typedef struct config
{

 BYTE AccCode[4];
 BYTE AccMask[4];
 BYTE BaudRate;
 BYTE BT0, BT1;

} ConfigStruct;

AccCode[4]: Acceptance code for CAN controller.
AccMask[4]: Acceptance mask for CAN controller.
BaudRate: 0→user-defined(must to set BT0,BT1), 1→10Kbps,

2→20Kbps, 3→50Kbps, 4→125Kbps, 5→250Kbps,
6→500Kbps, 7→800Kbps, 8→1Mbps.

 BT0, BT1: user-defined baud rate (used only if BaudRate=0)). For
example, BT0=0x04, BT1=0x1C, then baud rate setting for
the CAN controller is 100Kbps. For more detail baud rate
setting, please refer to manual of SJA1000 CAN controller.

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 42

CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.

CAN_SoftResetError: CAN controller software reset error.
CAN_SetACRError: Set Acceptance code to CAN controller error

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 43

CAN_SetAMRError: Set Acceptance mask to CAN controller error
CAN_SetBaudRateError: Set baud rate to CAN controller error
CAN_ConfigError: CAN controller enter operating mode failure.

4.1.11 CAN_ConfigWithoutStructure
z Description:

This function is the same as CAN_Config. But this function doesn’t use
ConfigStruct structure type. To provide this function is for that the
structure address of some application development is allocated different
from the PISOCAN.lib. So if users use CAN_Config and can’t configure
CAN card correctly, the CAN_ConfigWithoutStruct function can instead.

z Syntax:

int CAN_ConfigWithoutStructure(BYTE BoardNo, BYTE Port, DWORD
AccCode, DWORD AccMask, BYTE BaudRate, BYTE BT0,
BYTE BT1);

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)
AccCode: Acceptance code for CAN controller, low byte will be mapped

to ACR[3], high byte will be mapped to ACR[0].
AccMask: Acceptance mask for CAN controller low byte will be mapped

to AMR[3], high byte will be mapped to AMR[0].
BaudRate: 0→user-defined(must to set BT0,BT1), 1→10Kbps,

2→20Kbps, 3→50Kbps, 4→125Kbps, 5→250Kbps,
6→500Kbps, 7→800Kbps, 8→1Mbps.

 BT0, BT1: user-defined baud rate (used only if BaudRate=0)). For
example, BT0=0x04, BT1=0x1C, then baud rate setting for
the CAN controller is 100Kbps. For more detail baud rate
setting, please refer to manual of SJA1000 CAN controller.

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_SoftResetError: CAN controller software reset error.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 44

CAN_SetACRError: Set Acceptance code to CAN controller error
CAN_SetAMRError: Set Acceptance mask to CAN controller error

CAN_SetBaudRateError: Set baud rate to CAN controller error
CAN_ConfigError: CAN controller enter operating mode failure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 45

4.1.12 CAN_EnableRxIrq
z Description:

Enable receive interrupt for CAN controller.

z Syntax:

int CAN_EnableRxIrq(BYTE BoardNo, BYTE Port)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_EnableRxIrqFailure: Enable receives interrupt failure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 46

4.1.13 CAN_DisableRxIrq
z Description:

Disable receive interrupt of the CAN controller.

z Syntax:

Int CAN_DisableRxIrq(BYTE BoardNo, BYTE Port)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 47

CAN_DisableRxIrqFailure: Disable receives interrupt failure.

4.1.14 CAN_RxIrqStatus
z Description:

Obtain receive interrupt status of the CAN controller.

z Syntax:

int CAN_RxIrqStatus(BYTE BoardNo, BYTE Port, BYTE *bStatus)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)
*bStatus:[output] 0→receive interrupt disable;

1→ receive interrupt enable.

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 48

4.1.15 CAN_InstallIrq
z Description:

Enable or start IRQ for PISO-CAN board. Before calling this function,

CAN_EnableRxIrq must to be called first.

z Syntax:

int CAN_InstallIrq(BYTE BoardNo)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_ActiveBoardError: This board is not activated.
CAN_InstallIrqFailure: Enable or start IRQ failure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 49

4.1.16 CAN_RemoveIrq
z Description:

Disable or stop IRQ for PISO-CAN board. After calling this function, the

interrupts for all CAN controllers on board will be disabled.

z Syntax:

int CAN_RemoveIrq(BYTE BoardNo)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_ActiveBoardError: This board is not activated.
CAN_RemoveIrqFailure: Disable or stop IRQ failure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 50

4.1.17 CAN_IrqStatus
z Description:

Obtain IRQ status of the PISO-CAN board.

z Syntax:

int CAN_IrqStatus(BYTE BoardNo, BYTE *bStatus)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
*bStatus:[output] 0→IRQ disable;

1→ IRQ enable.

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 51

CAN_ActiveBoardError: This board is not activated.

4.1.18 CAN_Status
z Description:

Obtain the status of CAN controller for PISO-CAN board.

z Syntax:

int CAN_Status(BYTE BoardNo, BYTE Port,BYTE *bStatus)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)
*bStatus:[output] Status value of CAN controller.

Table 4.3 Bit interpretation of the bStatus.

Bit NAME VALUE STATUS

1 bus-off bit 7 Bus Status
0 bus-on
1 error bit 6 Error Status
0 ok
1 transmit bit 5 Transmit Status
0 idle
1 receive bit 4 Receive Status
0 idle
1 complete bit 3 Transmission Complete Status
0 incomplete
1 release bit 2 Transmit Buffer Status
0 locked
1 overrun bit 1 Data Overrun Status
0 absent
1 full/not empty bit 0 Receive Buffer Status
0 empty

z Return:
CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 52

CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.

4.1.19 CAN_SendMsg
z Description:

Send a CAN message immediately.

z Syntax:

int CAN_SendMsg(BYTE BoardNo, BYTE Port, PacketStruct
*CanPacket)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)
*CanPacket: [input] The point of structure for CanPacket is defined as

following,
typedef struct packet
{

LONGLONG MsgTimeStamps;
BYTE mode;
DWORD id;
BYTE rtr;
BYTE len;
BYTE data[8];

} PacketStruct;
MsgTimeStamps: Not use in this function.
mode: 0→ 11-bit identifier, 1 → 29-bit identifier.
id: Identifier
rtr: Remote transmission request
len: Data length
data[8]: data byte

z Return:

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_TransmitBufferLocked: Transmit buffer in CAN chip is locked.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 53

CAN_TransmitIncomplete: Transmission is not yet completed.
CAN_ConfigError: Port has not been configured successfully.

4.1.20 CAN_SendWithoutStruct
z Description:

This function is the same as CAN_SendMsg. But this function doesn’t
use PacketStruct structure type. If users use CAN_SendMsg and can’t
send CAN message correctly with some application development like
dot Net 2003, the CAN_SendWithoutStruct function can instead.

z Syntax:

int CAN_SendWithoutStruct(BYTE BoardNo, BYTE Port, BYTE Mode,
DWORD Id, BYTE Rtr, BYTE Dlen, BYTE *Data)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~4 or 1~2)
Mode: 0→ 11-bit identifier, 1 → 29-bit identifier.
Id: Identifier
Rtr: Remote transmission request
Dlen: Data length
*Data: data byte

z Return:

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_TransmitBufferLocked: Transmit buffer in CAN chip is locked.
CAN_TransmitIncomplete: Transmission is not yet completed.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 54

CAN_ConfigError: Port has not been configured successfully.

4.1.21 CAN_RxMsgCount
z Description:

Obtain the amount of CAN messages available within the CAN
controller’s RXFIFO or the software buffer (4KBytes). After calling the
functions CAN_EnableRxIrq and CAN_InstallIrq, the amount of CAN
messages is within the software buffer; otherwise it is within the CAN
controller’s RXFIFO.

z Syntax:

int CAN_RxMsgCount(BYTE BoardNo, BYTE Port);

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)

z Return:

The amount of CAN messages.
Note. If the parameter for BoardNo or Port isn’t correct, the return value

will always be 0.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 55

4.1.22 CAN_ReceiveMsg
z Description:

Obtain receive message from CAN controller’s RXFIFO or software
buffer. After calling the functions CAN_EnableRxIrq and
CAN_InstallIrq, the messages is within the software buffer, otherwise it
is within the CAN controller’s RXFIFO.
Note! If users’ PC go into “Standby mode” or “Sleep mode”, this
function will can’t receive any message.

z Syntax:

int CAN_ReceiveMsg(BYTE BoardNo, BYTE Port, PacketStruct
*CanPacket)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)
*CanPacket: [output] The structure for CanPacket is defined below,

typedef struct packet
{

LONGLONG MsgTimeStamps;
BYTE mode;
DWORD id;
BYTE rtr;
BYTE len;

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 56

BYTE data[8];
} PacketStruct;

MsgTimeStamps: This parameter in Windows 98/Me/NT4 will record the
time with system clock counter and in Windows 2000
/XP will record the system interrupt-time count of
100-ns unit when the CAN message is received from
SJA1000. The system clock counter starts to count
after the PC boots up. If more than one CAN
messages are received and stored in the 64-byte
SJA1000 FIFO, the time stamps of these CAN
messages may be closed.

mode: 0→ 11-bit identifier, 1 → 29-bit identifier.
id: Identifier

rtr: Remote transmission request
len: Data length
data[8]: data byte

z Return:

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_ConfigError: Port has not been configured successfully.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 57

CAN_ReceiveBufferEmpty: CAN controller’s RXFIFO is empty.
CAN_SoftBufferIsEmpty: Software RX Buffer is empty.
CAN_SoftBufferIsFull: Software RX Buffer Is full.

4.1.23 CAN_ReceiveWithoutStruct
z Description:

This function is the same as CAN_ReceiveMsg. But this function
doesn’t use PacketStruct structure type. To provide this function is for
that the structure address of some application development is allocated
different from the PISOCAN.lib like dot Net 2003. So if users use
CAN_ReceiveMsg and can’t receive CAN message correctly, the
CAN_ReceiveWithoutStruct function can instead.

z Syntax:

int CAN_ReceiveWithoutStruct(BYTE BoardNo, BYTE Port, BYTE
*Mode, DWORD *Id, BYTE *Rtr, BYTE *Dlen,
BYTE *Data, DWORD *H_MsgTimeStamps,
DWORD *L_MsgTimeStamps)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)
*Mode: 0→ 11-bit identifier, 1 → 29-bit identifier.
*Id: Identifier
*Rtr: Remote transmission request
*Dlen: Data length
*Data: data byte
*H_MsgTimeStamps, *L_MsgTimeStamps: These parameters in

Windows 98/Me/NT4 will record the time with system clock
counter and in Windows 2000/XP will record the system
interrupt-time count of 100-ns unit when the CAN message is
received from SJA1000. The *H_MsgTimeStamps is the high
DWORD and the *L_MsgTimeStamps is the low DWORD The
system clock counter starts to count after the PC boots up. If
more than one CAN messages are received and stored in the
64-byte SJA1000 FIFO, the time stamps of these CAN
messages may be closed.

z Return:

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 58

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_ConfigError: Port has not been configured successfully.
CAN_ReceiveBufferEmpty: CAN controller’s RXFIFO is empty.
CAN_SoftBufferIsEmpty: Software RX Buffer is empty.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 59

CAN_SoftBufferIsFull: Software RX Buffer is full.

4.1.24 CAN_ClearSoftBuffer
z Description:

Clear the software buffer of the PISOCAN.DLL driver.

z Syntax:

int CAN_ClearSoftBuffer(BYTE BoardNo, BYTE Port)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)

z Return:

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 60

4.1.25 CAN_ClearDataOverrun
z Description:

Clear the data overrun status bit for the CAN controller.

z Syntax:

int CAN_ClearDataOverrun(BYTE BoardNo, BYTE Port)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)

z Return:

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_PortNumberError: Port number is not correct.
CAN_ActiveBoardError: This board is not activated.
CAN_ConfigError: CAN controller enter operating mode failure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 61

4.1.26 CAN_OutputByte
z Description:

Write data to CAN chip (SJA1000).

z Syntax:

void CAN_OutputByte(BYTE BoardNo, BYTE Port, WORD wOffset,
BYTE bValue)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)
wOffset: [input] Address offset from base address
bValue: [input] Data byte

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 62

z Return:

None.

4.1.27 CAN_InputByte
z Description:

Read data from CAN chip (SJA1000).

z Syntax:

BYTE CAN_InputByte(BYTE BoardNo, BYTE Port, WORD wOffset)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
Port: [input] CAN port number (1~8)
wOffset: [input] Address offset from base address

z Return:

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 63

Data Byte of CAN chip.

4.1.28 CAN_GetSystemFreq
z Description:

Get the clock frequency. It is useful for calculate the time of the time
stamp for reception message.

z Syntax:

LONGLONG CAN_GetSystemFreq(void)

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 64

z Parameter:

None

z Return:

In Windows 98/Me/NT4 is clock frequency, in Windows 2000/XP is
always 10000000.

4.1.29 CAN_InstallUserIsr (only for Windows 2000/XP)
z Description:

Using this function can allow users to apply ISR (interrupt service
routine). When users put their ISR into this function, the interrupt of
receiving CAN message will trigger the users’ ISR.

z Syntax:

int CAN_InstallUserIsr(BYTE BoardNo,
void(*UserISR)(BYTE BoardNo))

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)
(*UserISR)(BYTE BoardNo): [input] The pointer which points a function

with format “void XXX(BYTE BoardNo)”.
The XXX is the function name of users’
ISR. The parameter, BoardNo, indicates
the number of the board which produces
an interrupt signal.

z Return:

CAN_NoError: OK
CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_ActiveBoardError: This board is not activated.
CAN_InstallIrqFailure: Enable or start IRQ failure.
CAN_InstallIsrError: Enable or start ISR failure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 65

4.1.30 CAN_RemoveUserIsr (only for Windows 2000/XP)
z Description:

When users don’t need the ISR function, call this function to remove
users ISR.

z Syntax:

Int CAN_RemoveUserIsr(BYTE BoadNo)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7)

z Return:

CAN_NoError: OK

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 66

CAN_DriverError: Kernel driver can’t be opened.
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.
CAN_ActiveBoardError: This board is not activated.
CAN_RemoveIrqFailure: Disable or stop IRQ failure.

4.1.31 CAN_BusErrorCode
z Description:

This function is used to get the error code capture (ECC) register of
CAN controller. This register obtains information about the type and
location of errors on the bus.

z Syntax:

int CAN_BusErrorCode(BYTE BoardNo, BYTE Port,
 BYTE *bErrorCode)

z Parameter:

BoardNo: [input] PISO-CAN board number (0~7).
Port: [input] CAN port number (1~8)
*bErrorCode:[output] Error code capture register of CAN controller.

Table 4.4 Bit interpretation of the error code capture register (ECC).

Bit SYMBOL NAME VALUE FUNCTION
ECC.7(1) ERRC1 Error Code 1 - -
ECC.6(1) ERRC0 Error Code 0 - -

1 RX; error occurred during
reception ECC.5(2) DIR Direction 0 TX; error occurred during
transmission

ECC.4(2) SEG4 Segment 4 - -
ECC.3(2) SEG3 Segment 3 - -
ECC.2(2) SEG2 Segment 2 - -
ECC.1(2) SEG1 Segment 1 - -
ECC.0(2) SEG0 Segment 0 - -

Notes
1. For bit interpretation of bit ECC.7 and ECC.6, see table 4.5
2. For bit interpretation of bit ECC.4 to ECC.0, see table 4.6

Table 4.5 Bit interpretation of bits ECC.7 and ECC.6

BIT ECC.7 BIT ECC.6 FUNCTION
0 0 Bit error
0 1 Form error
1

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 67

0 Stuff error
1 1 Other type of error

Table 4.6 Bit interpretation of bits ECC.4 to ECC.0
BIT ECC.4 BIT ECC.3 BIT ECC.2 BIT ECC.1 BIT ECC.0 FUNCTION

0 0 0 1 1 Start of frame
0 0 0 1 0 ID.28 to ID.21
0 0 1 1 0 ID.20 to ID.18
0 0 1 0 0 Bit SRTR
0 0 1 0 1 Bit IDE
0 0 1 1 1 ID.17 to ID.13
0 1 1 1 1 ID.12 to ID.5
0 1 1 1 0 ID.4 to ID.0
0 1 1 0 0 Bit RTR
0 1 1 0 1 Reserved bit 1
0 1 0 0 1 Reserved bit 0
0 1 0 1 1 Data length code
0 1 0 1 0 Data field
0 1 0 0 0 CRC sequence
1 1 0 0 0 CRC delimiter
1 1 0 0 1 Acknlwledge slot
1 1 0 1 1 Acknowledge delimiter
1 1 0 1 0 End of frame
1 0 0 1 0 Intermission
1 0 0 0 1 Active error flag
1 0 1 1 0 Passive error flag
1 0 0 1 1 Tolerate dominant bits
1 0 1 1 1 Error delimiter
1 1 1 0 0 Overload flag

z Return:

CAN_NoError: OK
CAN_BoardNumberError: BoardNo is not correct or exceeds the current

total board number.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 68

CAN_PortNumberError: Port number is not correct.

4.2 Flow Diagram for Application

In this section, we will show the operation procedure of PISO-CAN/PEX-CAN

/PCM-CAN board for sending and receiving CAN message. Figure 4.1 presents

the “Send CAN Message” procedure. Figure 4.2 and 4.3 stand for the “receiving

CAN Message” in polling and in interrupt mode, respectively. Users need to

follow the operation principle of PISO-CAN/PEX-CAN/PCM-CAN board for

correctly and easily send and receive the CAN message through CAN network.

For more detail information, please refer to the demo programs in section 5.

Figure 4.1 Flow Chart of “Send CAN Massage”

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 69

CAN_Reset

CAN_Init

CAN_Config

CAN_ReceiveMsg

CAN_ActiveBoard

CAN_CloseBoard

Start of Application

End of Application

CAN_RxMsgCount>0?

YES

NO

Figure 4.2 Flow Chart of “Receive CAN Massage”

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 70

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 71

CAN_Reset

CAN_Init

CAN_Config

CAN_ReceiveMsg

CAN_ActiveBoard

CAN_CloseBoard

Start of Application

End of Application

CAN_RxMsgCount>0?

YES

NO

CAN_EnableRxIrq

CAN_InstallIrq

CAN_RemoveIrq

CAN_DisableRxIrq

Figure 4.3 Flow Chart of “Receive CAN Massage with IRQ”

5 Demo Programs for Windows

All of demo programs will not work normally if DLL driver would not be

installed correctly. During the installation process of DLL driver, the install-shields

will register the correct kernel driver to the operation system and copy the DLL

driver and demo programs to the correct position based on the driver software

package you have selected (windows 2K/XP/7). After driver installation, the

related demo programs and development library and declaration header files for

different development environments are presented as follows.

|--\Demo
 |--\BCB3
 | |--\CAN.H

| |--\PISOCAN.LIB
|
|
|--\Delphi4

Æ Demo program
Æ for Borland C++ Builder 3
Æ Header file
Æ Linkage library for BCB

Æ for Delphi 4
Æ Declaration file | |--\CAN.PAS
 |

|--\VC6 Æ for Visual C++ 6
Æ Header file | |--\CAN.H

| |--\PISOCAN.LIB
|

Æ Linkage library for VC6

|--\VB6 Æ for Visual Basic 6
| |--\CAN.BAS
|

Æ Declaration file

|--\C#,Net Æ for C#.Net
| |--\ PISOCAN_Net.DLL
|

Æ Dll file

|--\VB,Net Æ for VB.Net
| |--\ PISOCAN_Net.DLL

Æ Dll file

The list of demo programs:

TxRxCAN_NoIRQ: Transmit and receive CAN messages.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 72

TxRxCAN_IRQ: Transmit and receive CAN messages with IRQ

A brief introduction of the demo programs

TxRxCAN_NoIRQ:

Demo1 is the example used for starting the PISO-CAN/PEX-CAN

/PCM-CAN board. This demo program is designed to send out the CAN

message through Port 1 and receive the CAN message immediately at port 2

in the same PISO-CAN/PEX-CAN/PCM-CAN board. Before exercising this

demo, the user needs to finish the CAN median wiring connection between

port 1 and port 2. Based on this demo, the user can key in the CAN message

into the port 1 frame area and then click the “Send” button in order to send out

the CAN message to port 2. If you click the “Receive” button in the CAN port

2 frame area, the CAN message received by CAN port 2 will be presented in

“TEXT” box. This is shown in the below screenshot. Note that if port 2 displays

a warning message like CAN Data Overrun, then it is an indication that the

un-read messages within the 64 bytes RXFIFO CAN buffer have been covered

by another message. This means that the messages that are being received

from the CAN bus may be in error and/or they may be missing part of the

message. Then the user can click on the “Clear Overrun” button to clear the

RXFIFO buffer overrun status within the CAN controller.

Figure 5.1: The form of demo1 program

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 73

TxRxCAN_IRQ:

In demo 2, we provide a demonstration on how to send out a CAN

message through port 1 and receive the CAN message in port 2 by means of

the interrupt mode. Contained within this operation, the user can key in the

CAN message into the port 1 frame area and click on the “Send” button to

send out the CAN message. At the same time, the CAN message will be

received at port 2 by means of the interrupt mode. As shown in the following

figure, port 2 can automatically receive the CAN message and store it within

the 4K bytes of buffer software. When the user clicks the “Receive” button, all

the messages stored in the 4K bytes buffer will all be presented in the TEXT

edit area, as shown in the following figure.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 74

Figure 5.2: The form of demo2 program

6 CANUtility Program for Windows

For PISO-CAN, PEX-CAN, or PCM-CAN, we provide a friendly CAN bus
utility tool to allow users to send/receive the CAN messages to/from CAN
network easily. This utility tool can be thought as a useful tool for monitoring
CAN messages or testing CAN devices on the CAN network. It supplies
several functions, such as sending CAN messages, receiving CAN messages,
storing CAN messages, cyclic transmission, and so forth. The operation
principle will be addressed in the following sub-section.

(1) CAN Configure Dialog
Please click the Board No combo box to select which CAN board plugged

on the pc will be used.
Check the Port Enable check boxes to enable CAN ports. Then select

CAN port tag. According to CAN communication requirement, users need to
set the proper baud rate, acceptance code and acceptance mask. The Baud
Rate combo box has eight kinds of baud, 10K, 20K, 50K, 125K, 250K, 500K,
800K, and 1M. Users can also define the special baud by using BT0 and BT1
field. If users select the user defined baud rate, users must have the
background of the CAN chip, SJA1000. Afterwards, click OK to save the
configuration.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 75

(2) Main Dialog

The CAN Utility main dialog is as following figure. There are 1 tag, 2 tags
and 4 tags for one-port card (PCM-CAN100), two-port card
(PISO-CAN200/200U, PEX-CAN200i, and PCM-CAN200), four-port card
(PISO-CAN400/400U) and eight-port card (PISO-CAN800U) respectively. In
the bottom of the main dialog, the status bar shows five parameters, board
number, port status, baud rate, acceptance code, and acceptance mask for the
selected port.

(3) CAN Transmission Function
In the CAN port transmits part page as follow figure, there are four function

buttons for transmission list to use.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 76

Add Button: User can key in the CAN message into the text boxes above
the transmission list. Then click add button to insert this CAN message into
transmission list. The transmission list can include maximum 20 CAN
messages. After adding the message into transmission list, users can send
this message to CAN network by using Send button.

Modify Button: If users want to modify the content of some CAN message
in the transmission list, select this CAN messages in the transmission list firstly.
Then, this CAN message information will be shown in the text boxes above the
transmission list. Users can modify the CAN message in these text boxes
directly. Finally, click Modify button to save the modification in the transmission
list.

Delete Button: If some CAN message in the transmission list is useless,
users can select it and click delete button to delete this CAN message from
transmission list.

Send Button: After users select one CAN message from transmission list,
click Send button to send this CAN message once from the selected CAN port.
If the timer parameter of this CAN message is not 0, the CAN message will be
send depending on this timer parameter periodically. In this case, the status
filed of this CAN message in transmission list will display “Running”, and the
text shown on the Send button will be changed to “Pause”. If uses want to stop
the message transmission, click this button again. There are only 5 CAN
message can be sending cyclically from one CAN port at the same time.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 77

(4) CAN Reception Function
The following figure shows the receive part of a selected CAN port. There

are four functions for reception list.

Rx Pause: Click this button to stop the CAN message reception from

specific CAN port. Click it again to continue the message reception.

Clear Button: Click this button to delete all CAN messages shown in the
reception list.

 Goto Last: Click this button to show the last received CAN message.

Scrolling Button: When the button is pushed down, the reception list is
always scrolled automatically to the last received CAN message. If this button
is pushed up, the reception list will stop to scroll automatically, but reception list
still get the CAN messages from CAN port. The default status of this button is
pushed down.

 (5) Menu Function

There are three functions on the CAN Utility menu.

File Menu:
� Load Configuration: If users had have saved the configuration

by using CANUtility before, users can click Load Configuration
function to load the older records into these lists of CAN Utility.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 78

� Save Configuration: The function is used for saving the
transmission list, data format list, and ID mask list of each CAN

port to a .txt file.
� Save Reception List: Save Receive List, is used for saving the

CAN messages that is received on the reception list. The data in
the reception list of each different CAN port will be saved into
different .txt file except that the reception list has no message.
For example, if users want to save the data in the reception list to
“test.txt“ file, generally, these data will be saved to four .txt files,
text_port01.txt, text_port02.txt, text_port03.txt, and
text_port04.txt when users using PISO-CAN400. If the reception
list of the port 2 has no data, the text_port02.txt file will not be
produced.

� Update Firmare: Update firmware of the CAN board. This
function can not be used to the PISO-CAN, PEX-CAN, and
PCM-CAN, it only for PISO-CM100/U, PISO-CPM100/U, and
PISO-DNM100/U.

Configuration Menu:

� Board Configuration: Users can click “Board Configuration” to
re-configure the CAN board. Please refer to “(1) CAN Configure
Dialog” of this section for more detail information.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 79

� Data Format: In this function, user can set what kind of format
(such as hexadecimal, decimal, or ASCII) the CAN message with
specific ID will be displayed on the reception list. The setting
dialog is as follows. For example, set the data format of the byte2
~ byte6 of the CAN message with ID 0x1AA to the decimal format.
Then, the reception list will display the byte2 ~ byte 6 data of the
message with ID 0x1AA by using decimal format, and display the
other bytes of this message by using hexadecimal format. Any
message without configuring data format will be shown by using
hexadecimal format. Users can configure maximum 20 different
ID messages in this dialog.

� Software ID Mask: If users don't want to show some message
with specific ID on the reception list, the ID mask function is
useful for that. As following figure, users can set maximum 20
different ID message in the ID mask list. Afterwards, if the CAN
port receives the message with the ID set in ID mask list, the
CAN message will not shown in the reception list.

About: Show the information about the CAN Utility version and the ICP

DAS home page.

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 80

7 Appendix

7.1 Acceptance Filtering

Four 8-bits Acceptance Code registers (AC0, AC1, AC2 and AC3) and
Acceptance Mask registers (AM0, AM1, AM2 and AM3) are available for a
various filtering of messages. These registers can be used for controlling a
4-byte filter, which can check the specific bits of a CAN message and decide
if this message will be passed to the CAN card or not. The message filter
general concept is shown in Figure A.1. The Acceptance Code Register is
mainly used for deciding what kind of message ID the CAN card will accept.
The Acceptance Mask Register is mainly used for deciding which bit of
message ID will need to check by using the Acceptance Code Register. If
the bit of the Acceptance Mask is set to 0, it means that the bit in the same
position of message ID needs to be checked.

ACR0 ACR1 ACR2 ACR3

AMR0 AMR1 AMR2 AMR3

Filter

11 bit Identifier Data 1 Data 2

11 bit Identifier 18 bit Identifier

OR

Bits used for acceptance filtering

Bits used for acceptance filtering

Standard Frame

Extended Frame

RTR bit

RTR bit

Receive
FIFO

Acceptance Filtering CAN Message

Figure A.1 Acceptance Filter

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 81

Example 1:

Assume that a message with a Standard Frame is considered. The
Acceptance Code Registers (ACRn) and Acceptance Mask Registers (AMRn)
is set as follows.

n 0 1 (upper 4 bits) 2 3
ACRn 01xx x010 xxxx xxxx xxxx xxxx xxxx

0011 1000 1111 1111 1111 1111 1111 AMRn
Accepted messages

01xx x010 xxxx (ID.28..ID.18 RTR)

(”x”=don’t care, only the upper 4 bits of ACR1 and AMR1 are used)

In this case, the ACR0 and the AMR0 are used for the upper 8 bits of message
ID. The upper 4 bits of the ACR1 and AMR1 are used for the lower 3 bits of the
message ID and RTR bit. The lower 4 bits of the ACR1 and AMR1 are useless.
The ACR2 and AMR2 are used for the first data byte of the CAN message. The
ACR3 and AMR3 are used for the second data byte of the CAN message.
Therefore, no matter the CAN message is remote transmit request message or
not, the message ID with the format 01xx x010 xxx will be accepted. (x means
“don’t care”).

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 82

Example 2:

Assume that a message with an Extended Frame is considered. The
Acceptance Code Registers (ACRn) and Acceptance Mask Registers (AMRn)
is set as follows.

n 0 1 2 3(upper 6 bits)
ACRn 1011 0100 1011 000x 1100 xxxx 0011 0xxx

0000 0000 0000 0001 0000 1111 0000 0111AMRn
Accepted messages

1011 0100 1011 000x 1100 xxxx 0011 0x (ID.28..ID.0 RTR)

(”x”=don’t care, only the upper 6 bits of ACR3 and AMR3 are used)

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 83

In this case, the lower 2 bits of AMR3 and AMR3 are useless. All the other bits
of Acceptance Code and Acceptance Mask will be used for the 29-bit message
ID and the RTR bit. Therefore, no matter the CAN message is RTR (remote
transmit request) message or not, the message ID follows the format 1011
0100 1011 000x 1100 xxxx 0011 0x (x means “don’t care”) will be accepted.

8 Dimensions

8.1 PISO-CAN200/400

PISO-CAN200/400-D/T

PISO-CAN200/400-T

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 84

PISO-CAN200/400-D

8.2 PISO-CAN100U/200U/400U/800U

PISO-CAN100U-D/T

PISO-CAN100U-T

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 85

PISO-CAN100U-D

PISO-CAN200U/400U-D/T

PISO-CAN200U/400U-T

PISO-CAN200U/400U-D

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 86

PISO-CAN800U

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 87

8.3 PEX-CAN200i
PEX-CAN200i-D/T

`

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 88

8.4 PCM-CAN100/200/200P

PCM-CAN100/200-D

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 89

PCM-CAN200P-D

PISO-CAN/PEX-CAN/PCM-CAN Series User’s Manual (v2.6 Dec/2013) ------- 90

	1 General Information
	1.1 Introduction
	1.2 Features
	1.3 Hardware Specifications
	1.3.1 PCM-CAN100/200/200P
	1.3.2 PEX-CAN200i
	1.3.3 PISO-CAN200/200U
	1.3.4 PISO-CAN400/400U
	1.3.5 PISO-CAN100U
	1.3.6 PISO-CAN800U

	1.4 Product Check List
	2 Hardware Configuration
	2.1 Board Layout
	2.2 Jumper Selection
	2.3 Connector Pin Assignment
	2.3.1 5-pin screw terminal connector
	2.3.2 9-pin male D-sub connectors
	2.3.3 37-pin female D-sub connectors

	2.4 Installation

	3 Software Installation
	4 Installation DLL Driver
	4.1 DLL Function Definition and Description
	4.1.1 CAN_GetDllVersion
	4.1.2 CAN_TotalBoard
	4.1.3 CAN_GetBoardInf
	4.1.4 CAN_GetCardPortNum
	4.1.5 CAN_ActiveBoard
	4.1.6 CAN_CloseBoard
	4.1.7 CAN_BoardIsActive
	4.1.8 CAN_Reset
	4.1.9 CAN_Init
	4.1.10 CAN_Config
	4.1.11 CAN_ConfigWithoutStructure
	4.1.12 CAN_EnableRxIrq
	4.1.13 CAN_DisableRxIrq
	4.1.14 CAN_RxIrqStatus
	4.1.15 CAN_InstallIrq
	4.1.16 CAN_RemoveIrq
	4.1.17 CAN_IrqStatus
	4.1.18 CAN_Status
	4.1.19 CAN_SendMsg
	4.1.20 CAN_SendWithoutStruct
	4.1.21 CAN_RxMsgCount
	4.1.22 CAN_ReceiveMsg
	4.1.23 CAN_ReceiveWithoutStruct
	4.1.24 CAN_ClearSoftBuffer
	4.1.25 CAN_ClearDataOverrun
	4.1.26 CAN_OutputByte
	4.1.27 CAN_InputByte
	4.1.28 CAN_GetSystemFreq
	4.1.29 CAN_InstallUserIsr (only for Windows 2000/XP)
	4.1.30 CAN_RemoveUserIsr (only for Windows 2000/XP)
	4.1.31 CAN_BusErrorCode

	4.2 Flow Diagram for Application

	5 Demo Programs for Windows
	6 CANUtility Program for Windows
	7 Appendix
	7.1 Acceptance Filtering

	8 Dimensions
	8.1 PISO-CAN200/400
	8.2 PISO-CAN100U/200U/400U/800U
	8.3 PEX-CAN200i
	8.4 PCM-CAN100/200/200P

