
I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 
 

1 

I-7188XA Series User’s Manual 
 
 
 
 
 
 
 
 
 
 
Warranty 
All products manufactured by ICP DAS are under warranty regarding 
defective materials for a period of one year, beginning from the date of 
delivery to the original purchaser. 
 
Warning 
ICP DAS assumes no liability for any damage resulting from the use of 
this product. ICP DAS reserves the right to change this manual at any 
time without notice. The information furnished by ICP DAS is believed to 
be accurate and reliable. However, no responsibility is assumed by ICP 
DAS for its use, not for any infringements of patents or other rights of 
third parties resulting from its use. 
 
Copyright 
Copyright©2007 by ICP DAS Co., Ltd. All rights are reserved. 
 
Trademark 
The names used for identification only may be registered trademarks of 
their respective companies.
 
 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 2 

Table of Contents 
1. Introduction ................................................................................................. 4 

1.1 FEATURES ..................................................................................................................... 5 
1.2 SPECIFICATIONS .......................................................................................................... 6 
1.3 Software and Document information .............................................................................. 7 
1.4 Hardware Information ..................................................................................................... 9 

1.4.1 Schematics and Dimensions of the I-7188XA(D) .................................................... 9 
1.4.2 Pin Assignment ...................................................................................................... 10 
1.4.3 Mounting the I-7188XA(D) ..................................................................................... 12 
1.4.4 Block Diagram ....................................................................................................... 13 
1.4.5 Wiring Diagrams for Application ............................................................................ 14 
1.4.6 DI/DO wire connection .......................................................................................... 19 
1.4.7 Mounting the I/O Expansion Bus ........................................................................... 20 

2. Quick Start................................................................................................. 21 
2.1 Software Installation ..................................................................................................... 21 
2.2 Connect the Download Cable to the Host PC ............................................................... 22 
2.3 Downloading Programs to the I-7188XA(D) ................................................................. 24 
2.4 MiniOS7 Upgrade ......................................................................................................... 28 

3. Writing Your First Program ...................................................................... 31 
3.1 Libraries ........................................................................................................................ 31 
3.2 Compiler and Linker ..................................................................................................... 32 
3.3 The Detailed Steps for Programming ............................................................................ 33 

3.3.1 Download Turbo C++ version 1.01 ........................................................................ 33 
3.3.2 Install Turbo C++ version 1.01 ............................................................................... 35 
3.3.3 Set the environment variables of the system ......................................................... 38 
3.3.4 Build and Execute the Program ............................................................................. 40 

4. Operating Principles ................................................................................. 48 
4.1 System Mapping ........................................................................................................... 48 
4.2 Debugging custom Programs using COM4 .................................................................. 49 
4.3 Using the Download Port as a COM Port ..................................................................... 51 
4.4 Functions and Demo Programs List ............................................................................. 52 
4.5 COM Port Comparison ................................................................................................. 55 
4.6 Using the COM Ports .................................................................................................... 56 

4.6.1 To print from the COM port .................................................................................... 57 
4.6.2 To Use COM1/COM2 for an RS-485 Application ................................................... 58 
4.6.3 To Send a Command to an I-7000 module ............................................................ 58 

4.7 Using the Red LED and 7-SEG LED Display ............................................................... 62 
4.8 Accessing the I-7188XA(D) Memory ............................................................................ 63 

4.8.1 Using Flash Memory ............................................................................................. 63 
4.8.2 Using RTC and NVSRAM ...................................................................................... 64 
4.8.3 Using EEPROM ..................................................................................................... 65 

4.9 Using the Watchdog Timer ........................................................................................... 67 
4.10 Using the Timer Function .............................................................................................. 69 
4.11 Using Digital Input and Digital output ............................................................................ 70 
4.12 Using the I/O Expansion Bus ........................................................................................ 72 

4.12.1 Definition of an I/O Expansion Bus ........................................................................ 72 
4.12.2 I/O Expansion Boards............................................................................................ 75 

5. Applications .............................................................................................. 76 
5.1 Embedded Controllers .................................................................................................. 76 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 3 

5.2 Local Real Time Controller (RTC) ................................................................................. 77 
5.3 Remote Local Controller ............................................................................................... 78 
5.4 PLC I/O Expansion Application ..................................................................................... 79 
5.5 Radio Modem Application ............................................................................................. 81 
5.6 An Application Using 4 COM Ports (1) .......................................................................... 83 
5.7 An Application Using 4 COM Ports (2) .......................................................................... 84 

Appendix A: What is MiniOS7 ......................................................................... 85 
Appendix B: MiniOS7 Utility and 7188XW ...................................................... 88 

MiniOS7 Utility ..................................................................................................................... 88 
7188XW ............................................................................................................................... 90 

Appendix C: Comparison Table ....................................................................... 99 
Appendix D: Library Function List ................................................................ 100 
Appendix E: Compiling and linking .............................................................. 137 

Using the TC Compiler ...................................................................................................... 137 
Using the BC++ Compiler .................................................................................................. 140 
Using MSC Compiler ......................................................................................................... 146 
Using MSVC++ Compiler ................................................................................................... 148 

Appendix F: Glossary .................................................................................... 153 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 4 

1. Introduction 
The I-7188XA(D) is a series of expandable embedded controllers 
designed for industry applications and can be used to replace PC or 
PLC devices in harsh environments. The I-7188XA(D) also has support 
for an I/O expansion bus, which can be used to implement various I/O 
functions, such as D/I, D/O, A/D, D/A, UART, Flash memory, battery 
backup SRAM, AsicKey and other I/O functions. Most types of I/O 
function can be implemented using this bus. ICP DAS offers more than 
10 types of I/O Expansion Board for the I-7188XA(D), which can be 
used to expand the features of the controller. Depending on the type of 
embedded firmware programs that are being developed, and which 
I/O Expansion Board, the I-7188XA(D) can be used as a single versatile 
controller. 
 
Package List 
In addition to this manual, the shipping package includes the following 
items: 
 One I-7188XA(D) module 
 One download cable (CA0910) 
 One companion CD containing software drivers and digital 

versions of the user manuals 
 One copy of the release notes 

 
 
 
 
 
 
 
 
 
 
Note: If any of these items are missing or damaged, please contact 
your local distributors for more information. We recommend that you 
save the shipping materials and cartons in case you want to ship the 
product in the future.

 
CA0910 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 5 

1.1 FEATURES 
 AMD embedded CPU, Am188TMES, 40M or compatible 
 Built-in RTC, NVRAM and EEPROM 
 4 Built-in COM ports: COM1, COM2, COM3 and COM4 
 Isolation voltage on the RS-485 port of 3000V 
 64-bit internal hardware-unique serial number 
 COM driver supports both interrupt and 1K QUEUE input/output 

buffer 
 Support for I/O expansion bus interface (Only one expansion 

board can be added) 
 Two Digital Input Channels 
 Two Open-collector output Channels 
 Built-in self-tuner ASIC controller on the RS-485 port 
 Optional 5 digits 7 segment display 
 Built-in MiniOS7 by ICP DAS 
 Program download port: COM4 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 6 

1.2 SPECIFICATIONS 
CPU module 
CPU Am188TMES, 40MHz or compatible 
SRAM 512K bytes 
Flash 512K bytes 
EEPROM 2K bytes 
NVRAM 31 bytes 
RTC (Real Time Clock) Yes 
Hardware Serial Number Yes 
Build-in Watchdog Timer Yes 
Communication Interface 
COM 1 RS-232/RS-485 

(Set using jumper JP6, default is RS-232) 
COM 2 RS-485 (Isolation voltage 3000V) 
COM 3 RS-232 
COM 4 RS-232 (Program download port) 
Ethernet Port No 
Digital Input 
Input Channels 2 
Contact Dry 
On Voltage Level Connect to GND 
Off Voltage Level Open. 
Digital Output 
Output Channels 2 
Output Type Open-collector 
Max Load Current 100mA 
Load Voltage +30V/DC Max. 
LED Display 
1 LED as Power/Communication Indicator 
5 digits 7 segment display (for I-7188XAD only) 
Dimensions 
119mm x 72mm x 33mm 
Operating Environment 
Operating temperature -25°C to +75°C 
Storage Temperature -30°C to +80°C 
Humidity 10 to 90% RH(non-condensing) 
Power 
Power requirements 10 to 30V/DC (non-regulated) 

Power consumption 2.0W for I-7188XA 
3.0W for I-7188XAD 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 7 

1.3 Software and Document information 
The location of all documents and software related to the I-7188XA(D) 
on the companion CD are shown in the following directory tree. The 
relevant file can quickly be located by referring to the tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The documents and software listed above can also be obtained from the 
ICP DAS website: http://ftp.icpdas.com/pub/cd/8000cd/napdos. The 
folder location of all documents and software on the website is identical 
to the companion CD. 
 
The iobus_e.pdf file that is provided in the 
CD:\Napdos\7188XABC\Xboard\Document\ folder and the “I/O 
Expansion Bus for 7188X/7188E User’s Manual” contain the same 
content, so the user can refer to either document for more details 
related to the I-7188XA(D) I/O expansion bus. 
 

CD:\Napdos 7188XABC 7188XA Demo BC_TC 

MSC 

7188XA_DemoList.htm 

7188XA_user_manual.pdf Document 

IO_Expansion_bus_document.html 

MiniOS7_document.html 

Program_Develop_document.html 

OS_image xa20050701.img 

Xboard Demo 

Document 

Readme.html 

iobus_e.pdf 

X702X703.pdf 

MiniOS7 Utility MiniOS7_utility minios7_utility_V311.exe 

Readme.html 

7188xw.exe 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 8 

Before continuing, it is recommended that you read the Readme.html, 
which can be found in the CD:\Napdos\7188XABC\7188XA\. The latest 
information available prior to shipping will be contained in this file. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 9 

1.4 Hardware Information 
1.4.1  Schematics and Dimensions of the I-7188XA(D) 

 

Top View 

Rear View Side View 

Unit: mm 

DIN-RAIL MOUNTING 
BRACKET 

Front View 

Bottom View 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 10 

1.4.2  Pin Assignment
 

 
 
The pin assignment of 14-pin screw terminal block is as follows: 
 

Pin Name Description 
1 DO1 Digital output, 100mA, 30V Max. 
2 DO2 Digital output, 100mA, 30V Max. 
3 DI1 Digital input, 3.5V ~ 30V 
4 DI2 Digital input, 3.5V ~ 30V 
5 TXD4 TXD pin for COM4 (RS-232) 
6 RXD4 RXD pin for COM4 (RS-232) 
7 GND GND pin for COM3 and COM4 
8 TXD3 TXD pin for COM3 (RS-232) 
9 RXD3 RXD pin for COM3 (RS-232) 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 11 

10 INIT* Initial pin 
11 D2+ DATA+ pin for COM2 (RS-485) 
12 D2- DATA- pin for COM2 (RS-485) 
13 +VS V+ of power supply (+10 to +30V/DC, unregulated) 
14 GND GND for the power supply 

 
Note: COM3 and COM4 share the same GND pin (pin 7). 
 
The pin assignment for the COM1 connector (DB-9 Male) is as below: 
 

 
DB9-Male (COM1) 

 
Pin Name Description 
1 DCD Data Carrier Detect (RS-232) 

2 RXD Receive Data (Use JP6 to select RS-232) 
D1+ DATA+ for RS-485 (Use JP6 to select RS-485) 

3 TXD Transmit Data (Use JP6 to select RS-232) 
D1- DATA- for RS-485 (Use JP6 to select RS-485) 

4 DTR Data Terminal Ready (RS-232) 
5 GND Signal ground for RS-232 
6 DSR Data Set Ready (RS-232) 
7 RTS Request To Send (RS-232) 
8 CTS Clear To Send (RS-232) 
9 RI Ring Indicator (RS-232) 

 
Note: COM1 can be used as either an RS-232 or RS-485 port and is 
selected using jumper JP6. Refer to Section 1.4.5 for more details 
regarding JP6 settings. If JP6 is set to RS-232, the COM1 connector is 
the same as the DB-9 RS-232 connector of the Host PC. If JP6 is set to 
RS-485, COM1 can drive I-7000 series modules directly. For wiring 
connection details, please refer to Section 1.4.5. 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 12 

1.4.3  Mounting the I-7188XA(D) 
1. Din-Rail Mounting 

 

2. Stack Mounting 
 

 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 13 

1.4.4  Block Diagram 
 
 
 
 
 
 

 
 
 
 

80188-40 CPU 
or compatible 

RTC 
& 

NVRAM 

COM2 
RS-485 

3000V isolation 

COM3 
RS-232 

COM4 
RS-232 

COM1 
RS-232/RS-485 

(Selected using JP6) 

EEPROM 
(2K) 

5-Digit LED 
(Optional) 

DI: 2 Channels 
3.5V to 30V 

DO: 2 Channels 
100mA, 30V 

SRAM=512K 
Flash Memory=512K 

+10V to +30V 
Power Converter 

Watchdog 
Circuit 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 14 

1.4.5  Wiring Diagrams for Application
Program download 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: There are 3 wires in the download cable: 
 Connect wire-1, labelled RX, to pin-6 of the I-7188XA(D) 
 Connect wire-2, labelled TX, to pin-5 of the I-7188XA(D) 
 Connect wire-3, labelled GND, to pin-7 of the I-7188XA(D) 
 Connect the DB-9 of the download cable to the PC COM1/2/3/4 

Port 

RI 

CTS 

RTS 

DSR 

GND 

DTR 

TXD 

COM Port of the PC 

D2+ 

Init* 

RXD3 

7188XA/7188XAD 

+VS 

D2- 

TXD3 

GND 

GND 

RXD4 

14 

13 

12 

11 

10 

9 

8 

7 

6 

9 

8 

7 

6 

5 

4 

3 

DTR 

GND 

DSR 

Rxd/D+ 

Txd/D- 

RTS 

CTS 

DCD 

RI 

1 

2 

3 

4 

5 

6 

7 

8 

9 

DI1 

DO2 

DO1 

TXD4 

DI2 

5 

4 

3 

2 

1 

Ext.GND 

Ext. 24V 

RXD 

DCD 

2 

1 

GND 

RXD 

TXD 

Connect the INIT* pin 
to GND to disable 
autoexec.bat 

Program download 
wiring connection 

Wiring label for CA0910 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 15 

Using a 3-wire RS-232 Port 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: There are 3 wires as follows: 
 Connect the RXD to the TXD of the RS-232 device 
 Connect the TXD to the RXD of the RS-232 device 
 Connect the GND to the GND of the RS-232 device 

RI 

CTS 
RTS 

DSR 
GND 
DTR 
TXD 
RXD 
DCD RS-232 Device 

RXD 
TXD 
GND 

7188XA/7188XAD 

COM1/COM3/COM4 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 16 

Using a 5-wire RS-232 Port 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: There are 5 wires as follows: 
 Connect the RXD to the TXD of the RS-232 device 
 Connect the TXD to the RXD of the RS-232 device 
 Connect the RTS to the CTS of the RS-232 device 
 Connect the CTS to the RTS of the RS-232 device 
 Connect the GND to the GND of the RS-232 device

RI 

CTS 
RTS 
DSR 

GND 

DTR 

TXD 
RXD 
DCD RS-232 Device 

GND 
RTS 
CTS 

7188XA/7188XAD 

RXD 

TXD 

COM3 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 17 

Using a 9-wire RS-232 Port 
 

 
 
Note: The COM1 pin assignment of the I-7188XA(D) is the same as the 
Host PC. The settings for JP6 on the I-7188XA(D) is as follows: 
 
 
 
 
 
 
 

5 
 
6 

COM1 = RS-232 (default) 

1 
 
2 

232 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 18 

Using the RS-485 Port 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The RS-485 interface can directly drive up to 256 I-7000 series 
modules without the need for a repeater. When using COM1 as an 
RS-485 COM Port, the settings for JP6 on the I-7188XA(D) is as 
follows: 
 

5 
 
6 

COM1 = RS-232 (default) 

1 
 
2 

232 

GND 
+VS 
D2- 

D2+ 

7000 Module 

D2- 

D2+ 

7188XA/7188XAD 

GND 

+VS 

10 
9 
8 
7 

14 
13 

12 
11 

Ext. GND 

Ext. 24V 

Ext. GND 

Ext. 24V 

 COM1/COM2 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 19 

1.4.6  DI/DO wire connection 
Digital Input Wire Connection 
 

Input Type ON State 
DI value as 0 

OFF State 
DI value as 1 

Relay Contact 
  

TTL/CMOS Logic 
  

Open Collector 
  

 
Digital Output Wire Connection 
 

Input Type ON State 
DO value as 1 

OFF State 
DO value as 0 

Drive Relay 

  

Resistance Load 

  



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 20 

1.4.7  Mounting the I/O Expansion Bus 
Before mounting: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After mounting: 
 

 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 21 

2. Quick Start

2.1 Software Installation 
Step 1: Insert the companion CD into the CD drive. 
 
Step 2: Copy the 7188XA folder from CD:\Napdos\7188XABC\ to the 

Hard Drive of the Host PC. 
 
Step 3: Install the MiniOS7 Utility. 

Locate and execute the minios7_utility_v311.exe file from 
CD:\NAPDOS\MINIOS7\UTILITY\MiniOS7_utility\ folder or 
http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_
utility/ 

 
Step 4: Copy the 7188xw.exe file from the CD:\Napdos\MiniOS7\utility\ 

folder to the PATH directory, for example C:\Windows\. 
 
After all the software is copied to the Host PC, the content of 7188XA 
folder should be as follows: 
 

 7188XA 
 Demo  Demo programs for the I-7188XA(D) 

 BC_TC  Demo programs for the BC++ and the TC++ 
compiler 

 MSC  Demo programs for the MSC compiler 

 7188XA_DemoList.htm  Demo list for the I-7188XA(D) 
 Document  Documents related to the I-7188XA(D) 
 OS_image  The MiniOS7 image file matches the demo 

programs 
 Readme.html  The detailed description about the 7188XA 

folder 
Note: The 7188xw.exe file is used as a bridge between the I-7188XA(D) 
and the Host PC. Therefore, the 7188xw.exe file must be copied to the 
“C:\Windows\” folder to allow it to be executed from any location. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 22 

2.2 Connect the Download Cable to the Host PC 
Step 1: Connect the CA0910 download cable between COM4 of the 

I-7188XA(D) and the COM Port of the Host PC, as shown in the 
diagram below. 

 
Step 2: Apply power (Vs+, GND) to the I-7188XA(D). Vs+ can be in a 

range from +10V to +30V DC. 
 

 
 
 
 
 
 
 
 
 
 
 
Step 3: After applying the power, the 5-digits of the 7-SEG LED will 

continuously show as follows. 
 

 
 

 
 

If the non-display version of module is being used, please 
continue to the next step. 

 
Step 4: Check that the red LED continuously blinks four times and wait 

for one second to next cycle. The diagram show as follows: 
 
 

CA0910 Connect to the COM 
Port of Host PC 

Connect to the 
Power supply 

Vs+ 

GND 

TXD 
RXD 
GND 

5-digit 7-SEG LED Red LED 

Hour Minute Second 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 23 

 
  
Note: Only the display version of the module will include a 5-digit 
7-SEG LED. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 24 

 

2.3 Downloading Programs to the I-7188XA(D) 
Before using the MiniOS7 Utility, ensure that the download cable is 
connected from the Host PC to the I-7188XA(D) and ensure that no 
other programs are running on the I-7188XA(D). For details of how to 
connect between the I-7188XA(D) and COM1 on the Host PC, refer to 
the wiring diagram in the Sec.1.4.5---Program download. 
 
Note: Instead of using the MiniOS7 Utility to download programs to the 
I-7188XA(D), the 7188xw.exe file can also be used. Refer to Appendix 
B: MiniOS7 Utility and 7188XW for details of the program download 
procedure for 7188xw.exe. 
 
The program download procedure is as follows (Refer to Sec2.1 to 
install MiniOS7 Utility Ver 3.11): 
Step 1: From the Windows START menu, go to 

Programs/ICPDAS/MiniOS7 Utility Ver 3.11/and locate the 
MiniOS7 Utility Ver 3.11. 

 
        
 
 
       
Step 2: Press          and Select “New connection”. Choose the 

right COM port and set other parameters. Click OK button and 
the utility will search module automatically.  

 
 
 
 
 
 
 
 
 
 
 
 

1 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: See if the MiniOS7 Utility connects with I-7188XA. The 

connected icon is        . The disconnected icon is        . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

2 

 

See here to know connection 
status. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 26 

 Step 4: Select the file to load from left side and click             to load file 
into module or draw the file to the right side.                 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
Step 5: Select the file and then press the right mouse button. Choose 

the Run and press to execute the program.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 

I-7188XA(D) file list 

 
 
 

Host PC file list 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 27 

 

Step 6: The result of the program will be shown in 7188xw window.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: The 7188xw window has to be closed and then the download 

operation (Step 4) could be done. 
 
The content of the Hello.c file is as follows: 

 
#include “7188xa.h”    /* Include the headers to use 7188xal.lib 

functions */ 
void main(void) 
{ 

InitLib();      /* Initiate the 7188xa library */ 
 

Print("Hello world!\r\n");  /* Print the message on the screen */ 
} 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 28 

2.4 MiniOS7 Upgrade 
ICP DAS will continue to add additional features to the MiniOS7 in the 
future, so it is recommended that you periodically check the ICP DAS 
website for the availability of updated versions of the MiniOS7. 
 
Note: For a more detailed description of the MiniOS7, please refer to 
Appendix A: What’s the MiniOS7. 
 
The MiniOS7 Utility provides an easy way to upgrade MiniOS7. The 
upgrade procedure is as follows: 
Step 1: Get the latest version of MiniOS7 image file. 

The format of the image file name is: TTYYMMDD.img 
TT: TYPE of product. 
YY: The year this image released 
MM: The month this image released 
DD: The day this image released 

 
Note: The MiniOS7 image file contained on the companion CD can be 
found in CD:\NAPDOS\MiniOS7\ directory. The latest version of 
MiniOS7 can be downloaded from the ICP DAS website: 
http://ftp.icpdas.com/pub/cd/8000cd/napdos/7188xabc/7188xa/os_image/ 
 
Step 2: Execute the MiniOS7 Utility. Refer to Step2 in Sec2.3 to connect 

the module. Select the MiniOS7 image file that you want to 
upgrade on the left side. Click the right mouse button to choose 
the “Update MiniOS7 Image”.  

  
 
 
 
 
 
 
 
 
 
  

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 29 

 
Step 3: It will take about 10 seconds for the upgrade to finish. If the 

MiniOS7 was updated successfully, a Confirm action dialog box 
will appear. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step 4: Press          button and see the “Build” item to check the 

version number of the MiniOS7. The diagram is as follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: Besides using the MiniOS7 Utility to upgrade the MiniOS7, 
7188xw.exe can also be used. Refer to Appendix B: MiniOS7 Utility 
and 7188XW for download procedures. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 31 

3. Writing Your First Program 

3.1 Libraries 
There are two function libraries for the I-7188XA(D) module as follows: 
 7188xas.lib is for programs of the small memory model. 
 7188xal.lib is for programs of the large memory model. 

Both libraries are suitable for TC, BC++, MSC and MSVC++ compilers. 
All declared functions are described in the header file, 7188xa.h. 
 
The location of latest Library:  
http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/minios7_2.0/i-718
8xa/lib/  or CD:\Napdos\MiniOS7\MiniOS7_2.0\i-7188xa\lib 
 
Hundreds of functions are supported in the 7188xas.lib/7188xal.lib files 
as follows: 

Function description Example 

COM port 

InstallCOM1, InstallCOM2, InstallCOM3 …… 
IsCOM1, IsCOM2, IsCOM3 …… 
ToCOM1, ToCOM2, ToCOM3 …… 
ReadCom1, ReadCom2, ReadCom3 …… 

EEPROM WriteEEP, ReadEEP, EnableEEP, ProtectEEP 
LED and 5-digit LED LedOn, LedOff, Init5DigitLed, Show5DigitLedWithDot 
Flash Memory FlashReadId, FlashErase, FlashRead, 

FlashWrite …… 
Timer and Watchdog 
Timer 

TimerOpen, TimeClose, TimerResetVlaue, 
TimerReadValue, StopWatchReset, 
StopWatchRead, StopWatchStop 

File GetFileNo, GetFileName, GetFilePositionByNo, 
GetFilePositionByName 

Connect to 7000 series 
modules SendCmdTo7000, ReceiveResponseFrom7000 

Programmable I/O SetDio4Dir, SetDio4High, SetDio4Low, GetDio4 
Others Kbhit, Getch, Putch, LineInput, Scanf …… 

 
Note: For a more detailed description of the functions, please refer to 
Appendix D: Library Function List. 
 

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/minios7_2.0/i-7188xa/lib/
http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/minios7_2.0/i-7188xa/lib/


 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 32 

3.2 Compiler and Linker 
A C Language compiler must be used to develop any applications. Valid 
compilers include: 
 BC++ 3.1~5.02 
 TC++ 1.01 
 TC 2.01 
 MSC  
 MSVC++ (Prior to version 1.52). 

 
ICP DAS suggests that BC 3.1 is used as the compiler as the libraries 
provided have been created using the BC 3.1 compiler. Special 
attention should be paid to the following items before using the compiler 
to develop custom applications: 
 Generate a standard DOS executable program. 
 Set the CPU to 80188/80186 
 Set the floating point to EMULATION if floating point computation 

is required. (Make sure not to choose 8087)  
 Cancel the Debug Information function as this helps to reduce 

program size. (MiniOS7 supports this feature.) 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 33 

3.3 The Detailed Steps for Programming 
3.3.1  Download Turbo C++ version 1.01 

Free versions of the Turbo C 2.01 and Turbo C++ 1.01 compilers can be 
downloaded from the Borland website. The following instructions will 
help you to install the Turbo C++ version 1.01 compiler on a PC running 
a Windows operating system. 
 
Step 1: Go to the CodeGear web site (http://dn.codegear.com/museum). 
 

 
 
Step 2: Scroll down the bar and click on the link for Antique Software: 

Turbo C++ version 1.01 to go to the download page. 
 
 
 
 
   
 
 
 
 
 
 
 
 

 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 34 

 
 
Step 3: Click on the link for Turbo C++ version 1.01, as shown below, 

to download the tcpp101.zip file. When requested, save the file 
to a safe location. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 35 

3.3.2  Install Turbo C++ version 1.01 
Step 1: Go to where you downloaded the file, and double click on the 

self-extracting file (tcpp101.zip) in Windows to extract it. This will 
open a WinZip Self-Extractor window (you do NOT need WinZip 
installed on your machine). By default, this will extract the files to 
the C:\tctemp directory. You may designate a different location. 

Step 2: Once the files have been extracted, exit the WinZip 
Self-Extractor window. 

Step 3: Open an MS-DOS command prompt window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 4: Change the directory to the c:\tctemp (or wherever you put the 

unzipped files folder), and execute the INSTALL.EXE file. 
 
 
 
 
 
 
 
 
 
 

  

 3.1 
3.2 

3.3 

 

4.2 

4.1 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 36 

Step 5: The following instructions will guide you through the installation 
process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5.1: Press <ENTER> to start the installation 
Step 5.2: Select the drive where the unzipped file is located. The 

default is “A”, so you should enter “C”, then press 
<ENTER>. 

Step 5.3: Press <ENTER> again. This will install the software from the 
directory \tctemp. 

Step 5.4: Press <ENTER> again. This allows Turbo C to be installed 
on the Hard Drive. 

Step 5.5: Use the Up/Down arrow keys (Press the up arrow once) to 
select Start Installation, and then press <ENTER> again. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Select “Start Installation” 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 37 

Step 5.6: At this point, the Turbo C++ version 1.01 compiler is 
installed in C:\TC, which is where the tcc.exe executable is 
also located. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 38 

3.3.3  Set the environment variables of the system 
After installing, you must add C:\TC to your executable search path. The 
easiest way to do this is as follows: 
Step 1: Right-click on the My Computer icon on the desktop. (Under 

Windows XP, the My Computer icon may be located in the start 
menu) and choose Properties from the context menu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Click on the Advanced tab, and then click on the Environment 

Variables button. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 39 

Step 3: In System variables, choose the variable Path and then click 
on the Edit button. 

Step 4: Add the target directory to the end of the Variable value using a 
semi-colon as a separator. For example 
”C:\TC\BIN;C:\TC\INCLUDE;”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 5: Click the OK button, and then restart your computer in order for 

your changes to take effect. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 40 

3.3.4  Build and Execute the Program 
Step 1: Open the MS-DOS command prompt window in the same way 

as you did in step 3 of the Install Turbo C++ version 1.01 
instructions. 

 
NOTE: You must close the original MS-DOS command prompt window 
first. 
 
Step 2: Type “d:” and then press <Enter> to enter D drive letter. 
Step 3: Type “cd 7188XA_test” and press <Enter>. 
 
 
 
 
 
 
 
 
 
 
NOTE: Assume there is a folder,7188XA_test, built under d:\. There is a 

7188xa.h and 7188xal.lib in the 7188XA_test folder. 
 
Step 4: Type tc and press <ENTER> to run the TC++ 1.01 Integrated 

Environment. This command can be executed from any location. 
 
 
 
 
 
 
 
 
 
 
 
  

3.1 

3.2 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 41 

 
Step 5: Create a source file (*.c). 

Step 5.1: Select New from the File menu. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5.2: Type in following code. Note that the code is case-sensitive. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
#include “7188xa.h” 

 
void main(void) 
{ 

InitLib(); 
 

Print("Hello world!\r\n"); 
} 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 42 

Step 5.3: Save the file by selecting Save from the File menu, and then 
enter the file name Hello.C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: If you have a text editor you are familiar with, you may use it to 
type in the above code. It should be noted that you cannot use a word 
processor application for this, as you must use an application that saves 
in plain text, such as notepad or edit. C language program files should 
always be given a name ending in “.C”. 
 
 
 
 
 
 
 
 

 

5.3.1 

5.3.2 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 43 

Step 6: Create a new project file (*.prj). 
 
 
 
 
 
 
 
 
 
 
 
 

Step 6.1: Type the name of the project file and then click the OK 
button. 

 
 

 
 
 
 
 
 
 
 
 
Step 7: Add all necessary files to the project. 
 
 
 
 
 
 
 
 
 
 

Open project 

 

Add item 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 44 

Step 7.1: Select the source file. Type “*.c” and press Enter in A area. 
 If the file you want is in B area, moving the green block to 

choose the file and click the Add button. If not, moving the 
green block to C area and press Enter to search the file.   

 
 
 
 
 
 
 
 
 
 
 
 

Step 7.2: Select the function library. Type “*.lib” and press Enter in A 
area. If the file you want is in B area, moving the green block 
to choose the file and click the Add button. If not, moving 
the green block to C area and press Enter to search the file. 

 
 
 
 
 
 
 
 
 
 
 
 
Step 8: Click Done to exit. 
 
 
 
 
 

 

A area 

B area 

C area 

A area 

B area 

C area 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 45 

Step 9: Click on “Options” and select Full menus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 10: Click on “Options” and select the compile menu item, then set 

the Code generation options. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 10.1: Change the Memory model (Small for 7188xas.lib, large 
for 7188xal.lib). 

 
 
 
 
 

 

Full menus 

 

Code generation… 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 46 

 
 
 
 
 
 
 
 
 

Step 10.2: Click on “More…”, then set the Floating Point to 
Emulation and the Instruction Set to 80186. 

 
 
 
 
 
 
 
 
 
 
Step 11: Click on “Options” and select “Directories…” to enter the 

TC++ 1.01 include and library directories. By default, the 
directories are same as the installation directory of the TC++ 
1.01. 

 
 
 
 
 
 
 
 
 
Note: The Include Directories specifies the directory that contains the 
standard include files. The Library Directories specifies the directories 
that contain the TC++ 1.01 startup object files and run-time library files. 
 

 
 

 

10.2.1 

10.2.2 

10.2.3 

 

11.1 

11.2 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 47 

Step 12: Click on “Compile” and select “Make EXE file” to make the 
project. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For instructions related to the downloading and execution of programs, 
please refer to Section 2.3. 
 
For more detailed information regarding compiling and linking related to 
the various C compilers (TC/BC/MSC/MSVC), please refer to Appendix 
E: Compiling and linking. 

 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 48 

4.  Operating Principles 

4.1 System Mapping 
 

Device Address mapping 
Flash ROM 512K: from 8000:0000 to F000: FFFF 
SRAM 512K: from 0000:0000 to 7000: FFFF 
COM1 BASE 0x100 
COM2 BASE 0x108 
COM3 0XFF80 to 0XFF88 
COM4 0XFF10 to 0XFF18 

 
Interrupt No. Interrupt mapping 

0 Divided by zero 
1 Trace 
2 NMI 
3 Break point 
4 Detected overflow exception 
5 Array bounds exception 
6 Unused opcode exception 
7 ESC opcode exception 
8 Timer 0 
9 Reserved 

0A DMA-0 
0B DMA-1 
0C \INT0 of the I/O expansion bus 
0D \INT1 of the I/O expansion bus 
0E COM1 (\INT2 of the I/O expansion bus) 
0F COM2 (\INT3 of the I/O expansion bus) 
10 \INT4 of the I/O expansion bus 
11 COM4 
12 Timer 1 
13 Timer 2 
14 COM3 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 49 

4.2 Debugging custom Programs using COM4 
The COM4 Port (download port) of the I-7188XA(D) has three major 
functions. 
 Downloading programs from the Host PC 
 Connecting to the Host PC to enable program debugging 
 Acting as a general-purpose COM port 

 
When the I-7188XA(D) is switched on, it will initialize COM4 in the 
following configuration under console mode: 
 Start Bit=1, Data Bit=8, Stop Bit=1, no parity 
 Baud Rate=115200 bps 

 
The I-7188XA(D) will check the status of the INIT* pin. If the INIT* pin 
is shorted to the GND pin, the I-7188XA(D) will send the start up 
information to COM4 and enter console mode to allow the user to 
download/debug a program, and the following start up messages will be 
displayed. 
 Power off the Host PC and I-7188XA(D) 
 Connect the download cable between COM4 on the I-7188XA(D) 

and the COM Port of the Host PC (refer to Section 2.2 for more 
details) 

 Switch on the power for the Host PC and execute the 7188xw.exe 
 Switch on the power for the I-7188XA(D) 
 All initialization messages will be shown on the monitor of the Host 

PC 
 
If the INIT* pin is open, the I-7188XA(D) will search for the 
autoexec.bat file. If the autoexec.bat file is present, the I-7188XA(D) 
will execute it. If the autoexec.bat file is not present, the I-7188XA(D) 
will revert to console mode to allow the user to download/debug a 
program. 
 
After completing the initialization stage, the I-7188XA(D) will use the 
COM4 as its standard input/output. The standard output of the 
I-7188XA(D) will be shown on the monitor of the Host PC. If a key is 
pressed on the keyboard of the Host PC, the key code will be echoed to 
the I-7188XA(D) as standard input. Therefore both the keyboard and 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 50 

monitor of the Host PC can be used as standard input and output for the 
I-7188XA(D) as follows: 
 Use 7188xw.exe or MiniOS7 Utility as a bridge between the 

I-7188XA(D) and the Host PC 
 Execute 7188xw.exe or the MiniOS7 Utility on the Host PC to 

setup this bridge 
 The keyboard of the Host PC  standard input of I-7188XA(D) 
 The monitor of the Host PC  standard output of I-7188XA(D) 

 
In this way, the I-7188XA(D) can read data from the keyboard and 
display it on the monitor. Thus, debugging a program will be easies and 
effective. 
 
Note: 7188xw.exe and the MiniOS7 Utility are provided on the 
companion CD. Please refer to Section 2.2 for detailed wiring 
information and Section 2.3 for details of how to download programs. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 51 

4.3 Using the Download Port as a COM Port 
The download port (COM4) of the I-7188XA(D) can be used as a 
general purpose RS-232 port in the following manner: 
Step 1: Download custom programs and autoexec.bat to I-7188XA(D) 

first. 
Step 2: Switch off the I-7188XA(D) and remove the download cable from 

the Host PC. 
Step 3: Disconnect the INT* pin from the GND pin of the I-7188XA(D) if 

they are connected. 
Step 4: Switch on the I-7188XA(D) (no standard input, no standard 

output, no debug information). 
Step 5: Connect a download cable between a new RS-232 device and 

the COM4 of the I-7188XA(D). 
Step 6: Initialize the COM4 to the new configuration. 
Step 7: The COM4 of the I-7188XA(D) can now be used a general 

purpose RS-232 port.



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 52 

4.4 Functions and Demo Programs List 
There are several demo programs that designed for I-7188XA(D). For 
more detailed information regarding these programs, please refer to the 
contents in later sections. The functions of the demo programs are as 
follows: 
 

Folder Demo program Explanation Section 

Hello 

Hello_C Detecting if the operation system is 
MiniOS7. 
Note: MSC does not support C++ 
language. The Hello_C++ file is only 
supported by BC. 

3.3.4 

Hello_C++  

COM_Port 

C_Style_IO 

1. Shows how to write a function to 
input data. 

2. Shows how to retrieve a string. 
3. Shows how to use a C function: 

sscanf, or just use Scanf(). 

4.6 
Receive Receive data from the COM Port. 

Slv_COM 

The PC sends commands to the 
I-7188XA(D), and receives responses 
from the I-7188XA(D). Also shows how 
to use another COM Port or LED to show 
information to help debug a program. 

ToCom_In_Out Reads/writes the byte data via the 
COM Port. 

DateTime  
Reads the date and time from an 
RTC and prints it on a monitor (user 
can also set the date and time). 

 

IO_PIN  Reads/writes the DO and DI of the 
I-7188XA(D). 4.11 

LED 
Led Shows how to use the DelayMs function 

to switch the LED ON or OFF. 
4.7 

Seg7led Controls the red LED and 5-digit 
7-segment LED. 

File 

Config_1_Basic 

In many applications, a text file is 
needed in order to record specific 
information so that the program can 
read it. FSeek can be used to retrieve 
specific information from a text file. 

 

Config_2_Advanced 

Extends config_1_Basic, and adds 
GetProFileInt, GetProFileFloat and 
GetProFileStr. These functions can 
be used to determine the "Type" from 
a text file. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 53 

Memory 

Demo5 Shows how to access the NVRAM. 

4.8 

EEPROM Writes a value to the EEPROM and 
shows it on the monitor. 

EEPROM-r Reads the data that has been written 
to the EEPROM. 

EEPROM-w 

Inputs a value and stores it in an 
EEPROM block 1 peer address 
(value will automatically increase by 
1). 

Flash Reads, writes and erases the Flash 
memory. 

Flash-r Reads the value that has been written 
to the Flash memory. 

Flash-w 
Inputs a value written in the Flash 
memory (value will automatically 
increase by 1). 

NVRAM-r Reads the value that has been written 
to NVRAM. 

NVRAM-w Writes a value to the NVRAM (value 
will automatically increase by 1). 

Top-Mem Demonstration of the 
AllocateTopMemory function 

Misc 

Reset Restores the initial values.  

Runprog Uses the Ungetch function to run 
another program.  

SerialNumber Retrieves the serial number of the 
I-7188XA(D).  

Watchdog Enables the Watchdog or bypasses 
the enabled Watchdog. 4.9 

7K87K_Module 

7K87K_demo_for_com 

Show how to connect and control the 
7k or 87k series modules via COM2. 4.6.3 

7K87K_AI_for_Com 
7K87K_DI_for_Com 
7K87K_DIO_for_Com 
7k87K_DO_for_Com 
AO_024_for_Com 
AO_22_26_for_Com 

Timer 

Demo90 A demonstration program showing 
how to use the Timer function. 

4.10 Demo91 
Show how to use the CountDownTimer 
function on channel 0 to switch the LED 
ON or OFF. 

Demo92 
Shows how to use the StopWatch 
function on channel 0 to switch the 
LED ON or OFF. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 54 

Demo96 
Shows how to use the InstallUserTimer 
function to control the 5-digit 7-segment 
LED. 

Demo97 Shows how to use the DelayMs function 
to switch the LED ON or OFF. 

Demo98 
Shows how to use the I-7188XA(D) 
timer function to send/receive data to 
or from 7000 series modules. 

XBoard 
 These are demo programs for all I/O 

expansion boards that are applicable 
to the I-7188XA(D). 

4.12 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 55 

4.5 COM Port Comparison 
The I-7188XA(D) COM ports are as follows: 
 

COM Port Hardware 
COM1 16C550, 9-wire RS-232 (Default) or 2-wire RS-485 
COM2 16C550, 2-wire RS-485 
COM3 80188’s on-chip UART-0, 3-wire RS-232 
COM4 80188’s on-chip UART-1, 3-wire RS-232 

 
The I-7188XA(D) COM Ports can be set as RS-232 or RS-485 as 
below: 
 

COM Port Type Pin name 
2-wire RS-485 Data+, Data- 
3-wire RS-232 TXD, RXD, GND 
9-wire RS-232 TXD, RXD, GND, RTS, CTS, DCD, DTR, DSR, RI 

 
The programming required for the 16C550 is very different from the 
80188 UART. Interrupt handling on the 80188 is also very different from 
the 8259 on a PC. Therefore, the RS-232 application programs for PC 
are not executed in I-7188XA(D). 
 
The software driver for the I-7188XA(D) is an interrupt driven library that 
provides a 1K QUEUE buffer for each COM Port. The software is well 
designed and easy to use. 
 
The software driver provides the same interface for all four COM Ports, 
so each port can be used in the same way without any difficulty. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 56 

4.6 Using the COM Ports 
The 7188XA(D) has four communication ports. 
 COM1 can act as either an RS-232 (Default) or RS-485 port 

RS-232: TXD, RXD, RTS, CTS, DTR, DSR, DCD. RI GND 
RS-485: D1+, D1- (Self-tuner ASIC inside) 

 COM2 is an RS-485 port (D1+, D1-, Self-tuner ASIC inside) 
 COM3 is an RS-232 port (TXD3, RXD3, GND) 
 COM4 is an RS-232 port (TXD4, RXD4, GND) 

 
Before using the COM Port, the InstallCom() (or InstallCom1/2/3/4) 
function must be called to install the driver for the COM Port. 
Before exiting the program, the RestoreCom() (or RestoreCom1/2/3/4) 
function must be called to uninstall the driver. 
 
After calling the InstallCom() function, data can be read from the COM 
Port, sent to the COM Port, printed from the COM Port and so on. 
 
Before reading data from the COM port, the IsCom() function should be 
used to check if any data has already been sent to the COM Port. If yes, 
then the ReadCom() function should be used to read the data from 
input buffer of the COM Port. 
Before sending data to the COM Port, the ClearCom() function could be 
used to make sure the output buffer of the COM Port is clear, then use 
the ToCom() function to send data to the COM Port. 
 
For example, the code to echo the data back to COM4 (RS-232) is 
shown below. 
 
 
 
 
 
 
 
 
 
 

 
int port=4;  /*to use COM4*/ 
int quit=0, data; 

 
InitLib();      /* Initiate the 7188xa library */ 
InstallCom(port, 115200L, 8, 0, 1);  /*install the COM driver*/ 
while(!quit){ 

if(IsCom(port)){ /*check if any data is in the COM Port input buffer*/ 
data=ReadCom(port);  /*read data from the COM Port*/ 
ToCom(port, data);  /*send data via the COM Port*/ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 57 

 
 
 
 
 
 
Use the “port” variable to switch from COM4 to COM2, simply change 
port=4 to port=2. 
 
If the program is set to use COM4, the code can be altered as follows: 

 
 

4.6.1  To print from the COM port 
The I-7188XA(D) library also supports functions such as printf() from 
the standard C library to produce a formatted output. 
 
The printCom() function can be used for all COM Ports, and 
printCom1/2/3/4 can be sued for individual ports. Before using the 
printCom() function, the InstallCom() function must first be called. The 
code is shown below: 
 
 
 

if(data==’q’) quit=1;  /*if ‘q’ is received, exit the program*/ 
} 

} 
RestoreCom(port);  /*uninstall the COM driver*/ 

 
int quit=0, data; 
 
InitLib();   /* Initiate the 7188xa library */ 
InstallCom4(115200L, 8, 0, 1);  /*install the COM4 driver*/ 
while(!quit){ 

if(IsCom4()){  /*check if any data is in the COM4 input buffer*/ 
data=ReadCom4();  /*read data from COM4*/ 
ToCom4(data);  /*send data via COM4*/ 
if(data==’q’) quit=1;  /*if ‘q’ is received, exit the program*/ 

} 
} 
RestoreCom1();  /*uninstall the COM driver*/ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 58 

 
 

4.6.2  To Use COM1/COM2 for an RS-485 Application 
COM1/COM2 is a 2-wire RS-485 COM Port, and includes the following 
2 pins: 
 D+: connect to the Data+ of the RS-485 network 
 D-: connect to the Data- of the RS-485 network 

 
COM1/COM2 is a half-duplex 2-wire RS-485 network and cannot be 
used in a full-duplex 4-wire application. It is designed to directly drive 
I-7000 series modules. 
 
Send/receive directional control in a 2-wire RS-485 network is very 
important. Therefore, the I-7188XA(D) is equipped with a Self-Tuner 
ASIC controller for all RS-485 ports, which will automatically detect and 
control the send/receive direction of the RS-485 network. In this manner, 
the application programmer does not have to worry about the 
send/receive direction control for the RS-485 network. 
 
 

4.6.3  To Send a Command to an I-7000 module 
The commands used for I-7000 series modules are very different from 
those of the I-7188XA(D), but commands can be sent from the 
I-7188XA(D) to a I-7000 module using the ToCom() function. 
 
 
 

 
int port=2;  /*to use COM2*/ 
int i; 
 
InitLib();   /* Initiate the 7188xa library */ 
InstallCom(port, 115200L, 8, 0, 1);  /*install the COM2 driver*/ 
for(i=0; i<10; i++){ 

printCom(port, “Test %d\r\n”, i);  /*print data from COM2*/ 
} 
RestoreCom(port);  /*uninstall the COM driver*/ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 59 

Using COM1/COM2 to connect and control I-7000 modules 
The procedure for I-7000-related applications is as follows: 
Step 1: The I-7188XA(D) sends a command string to the I-7000 series 

modules. 
Step 2: The destination I-7000 modules execute the command. 
Step 3: The destination I-7000 modules delay by 1 byte to allow for 

setting time. 
Step 4: The destination I-7000 modules echo the result string back to 

the I-7188XA(D). 
 
Note: The delay time used in step 3 is only 1 byte. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The example code for sending a command to COM2 (RS-485) is shown 
below. 
 
 
 

RS-485 
 (Data+, Data-) 

I-7188XA(D) 

I-7188XA(D)/I-7000 
 

Connect to the 
Power supply 

+Vs 

GND 

Connect to the 
Power supply 

+Vs 

GND 

DATA+ 
DATA- 

DATA+ 

DATA- 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 60 

 
In addition to using the ToCom() function, the SendCmdTo7000() 
function can also be used to send commands to an I-7000 series 
module. The ReceiveResponseFrom7000() function can be used to 
receive the response from an I-7000 series module. 
 
Functions used to connect to an I-7000 module: 
 SendCmdTo7000(int iPort, unsigned char *cCmd, int 

iChksum);) 
This function sends a command to an I-7000 series module. If the 
checksum is enabled, the function will add 2 bytes checksum to 
the end of the command. 

 ReceiveResponseFrom7000_ms(int iPort, unsigned char 
*cCmd, long lTimeout, int iChksum);) 
After calling the SendCmdTo7000() function the 
ReceiveResponseFrom7000_ms() function can be called to 
retrieve a response from an I-7000 series module. 

 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\7K87K_Module 
directory for more detailed information. 
 
Note: For more I-7000 commands, please refer to the “user’s manual 
for 7000 DIO”. When using COM1 as an RS-485 COM port, the settings 
for JP6 on the I-7188XA(D) is as follows. 
 

 
int port=2;  /*to use COM2*/ 
int i; 
char data[ ]=”$01M\r”;  /*command to read a module’s name*/ 
 
InitLib();   /* Initiate the 7188xa library */ 
InstallCom(port);  /*install the COM2 driver*/ 
for(i=0; i<5; i++) 

ToCom(port, data[i]);  /*send a command to the I-7000 module*/ 
………  /*program code*/ 
RestoreCom(port);  /*uninstall the COM driver*/ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 61 

 
 
 
 
 5 

 
6 

COM1 = RS-232 
 

1 
 
2 

232 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 62 

4.7 Using the Red LED and 7-SEG LED Display 
The I-7188XAD includes a 5-digit 7-segment LED, together with a 
decimal point, which can be switched on or off using software. Each 
digit of the LED is numerically identified from left to right using the 
numbers 1 to 5, and is individually programmable, which can be very 
useful in real world applications and can be used to replace a monitor or 
touch screen in many applications. 
 
Before attempting to use the LED, the Init5DigitLed() function must first 
be called, then the Show5DigitLed() function can be used to display 
data. The code required to display “7188d” on 5-digit 7-segment LED is 
as follows: 

 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\LED folder for more 
information. 

 
Init5DigitLed(); 
Show5DigitLed(1, 7); 
Show5DigitLed(2, 1); 
Show5DigitLed(3, 8); 
Show5DigitLed(4, 8); 
Show5DigitLed(5, 13);  /* The ASCII code for ‘d’ is 13 */ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 63 

4.8 Accessing the I-7188XA(D) Memory 
4.8.1  Using Flash Memory 

The I-7188XA(D) module contains 512K bytes of Flash memory which 
includes space reserved for the MiniOS7. The MiniOS7 occupies the 
0xF000 segment. So user can use the other segments whose total size 
is 448K bytes. 
 
Each bit of the Flash memory can only be written from 1 to 0 and cannot 
be written from 0 to 1. The only way to change the data from 0 to 1 is to 
call the EraseFlash() function to erase a block from the Flash Memory 
(64K bytes). The user should decide whether to write to the block or to 
erase it. 
 
To write an integer to segment 0xD000, offset 0x1234 of the Flash 
Memory, the code is as follows: 

Reading data from the Flash Memory is somewhat like reading data 
from SRAM. The user should allocate a far pointer to point to the 
memory location first, and then use this pointer to access the memory. 

 
int data=0xAA55, data2; 
char *dataptr; 
int *dataptr2; 

 
InitLib();   /* Initiate the 7188xa library */ 

 
dataptr=(char *)&data; 
FlashWrite(0xd000, 0x1234, *dataptr++); 
FlashWrite(0xd000, 0x1235, *dataptr); 

 
/* read data from the Flash Memory method 1 */ 
dataptr=(char *)&data2; 
*dataptr=FlashRead(0xd000, 0x1234); 
*(dataptr+1)=FlashRead(0xd000, 0x1235); 

 
/* read data from the Flash memory method 2 */ 
dataptr2=(int far *)_MK_FP(0xd000, 0x1234); 
data=*data 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 64 

Before writing data to Flash Memory, the user must first call the 
FlashWrite() function, and check whether data can be written or not. 
After calling the EraseFlash() function, data can be written to that 
segment. 
 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\Memory folder for more 
information. 
 
 

4.8.2  Using RTC and NVSRAM 
The I-7188XA(D) module contains both an RTC and NVRAM, which are 
located on the same chip, and an onboard Li battery that is used as 
backup for at least 10 years. The features of the RTC are as follows: 
 BIOS support for RTC time and data 
 MiniOS7 supports RTC time and date 
 Seconds, minutes, hours, date of the month 
 Month, day of the week, year (Leap year valid up to 2079) 
 NVSRAM: 31 bytes 

 
The NVSRAM can be read/written any number of times. The features of 
NVSRAM are as follows: 
 Data Validity: 10 years 
 Read/write cycles: unlimited 
 Total 31 bytes 

 
The ReadNVRAM() function can be used to read one byte of data from 
the NVRAM and WriteNVRAM() function can be used to write one byte 
of data to the NVRAM. The code to write data to NVRAM address 0 is 
shown below. 

 
int data=0x55, data2; 
 
InitLib();  /* Initiate the 7188xa library */ 
WriteNVRAM(0, data); 
data2= ReadNVRAM(0);    /* now data2=data=0x55 */ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 65 

To write an integer (two bytes) to the NVRAM, use the code shown 
below. 

 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\Memory folder for more 
information. 
 
 

4.8.3  Using EEPROM 
The EEPROM is designed to store data that is not changed frequently, 
such as: 
 Module ID, configuration settings 
 COM port configuration settings 
 Small databases 

 
The erase/write cycle of the EEPROM is limited to1,000,000 erase/write 
cycles, so it should not be changed frequently when testing. The 
EEPROM can be erased/written in a single byte, so it is very useful in 
real world applications. 
 
The I-7188XA(D) has 2K bytes of EEPROM memory, containing 8 
blocks and each block contains 256 bytes, giving a total of 2048 bytes of 
EEPROM memory. Normally, the EEPROM is in protected mode by 
default, meaning that no data can be written to the EEPROM. The 
EE_WriteEnable() function must be called to unprotect it before writing 
any data.  

 
int data=0xAA55, data2; 
char *daraptr=(char *)&data; 

 
WriteNVRAM(0, *dataptr);      /* write the low byte */ 
WriteNVRAM(1, *dataptr+1);    /* write the high byte */ 
dadaptr=(char *)&data2; 
*dataptr=ReadNVRAM(0);      /* read the low byte */ 
(*dataptr+1)=ReadNVRAM(1);   /* read the high byte */ 
/* now data2=data=0xAA55 */ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 66 

For example: To write data to EEPROM block1, address 10, first call the 
EE_WriteEnable() function . The code is shown below. 

 
Note: To write an integer to EEPROM, the EE_WriteEnable() function 
must be called twice, in the same manner as writing data to NVRAM. 
 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\Memory folder for more 
information.

 
int data=0x55, data2; 
 
InitLib();  /* Initiate the 7188xa library */ 
EE_WriteEnable(); 
EE_MultiWrite(1, 10, 1, &data); 
EE_WriteProtect(); 

 
EE MultiRead(1, 10, 1, &data2);    /* now data2=data=0x55 */ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 67 

4.9 Using the Watchdog Timer
The watchdog timer of the I-7188XA(D) is fixed at 0.8 seconds for 
MiniOS7 2.0. When the I-7188XA(D) is first powered on, the watchdog 
timer will be always enabled. If the watchdog timer is not refreshed 
within 0.8 seconds, it will reboot the I-7188XA(D). 
 
The MiniOS7 of the I-7188XA(D) will automatically refresh the watchdog 
after being powered on. User programs can call the software driver to 
stop the MinOS7 from refreshing the watchdog timer, but the program 
must then refresh the watchdog timer manually. If the program does not 
refresh the watchdog timer every 0.8 seconds, it will cause the 
I-7188XA(D) to reboot. 
 
The program must then ask the MiniOS7 to reset the watchdog timer, 
then stop and return to the MiniOS7 command prompt. 
 
Use the EnableWDT() function to enable the watchdog timer or use the 
DisableWDT() function to disable it. After the watchdog is enabled, the 
program should call the RefreshWDT() function before the timer count 
reaches 0.8 seconds, otherwise the watchdog will reboot the 
I-7188XA(D) module. The sample code is as follows: 

 
The IsResetByWatchDogTimer() function is used to check whether the 
I-7188XA(D) module has been rebooted by the watchdog timer. This 
function must be inserted at the beginning of program. The sample code 
is as follows: 

 
EnableWDT(); 
while(!quit) 
{ 

RefreshWDT(); 
User_function(); 

} 
DisableWDT(); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 68 

 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\Misc folder for more 
information. 

 
main() 
{ 

InitLib();   /* Initiate the 7188xa library */ 
 
if(IsResetByWatchDogTimer()) 
{ 

/* do something here to check the system */ 
} 
quit=0; 
EnableWDT(); 
while(!quit) 
{ 

RefreshWDT(); 
User_function(); 

} 
} 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 69 

4.10  Using the Timer Function 
The I-7188XA(D) can support one main time tick, 8 StopWatch timers 
and 8 CountDown timers. The I-7188XA(D) uses a single 16-bit timer to 
perform these timer functions, with a timer accuracy of 1 ms. The 
InstallUserTimer() function can be used to install a custom timer 
function and the function will be called at 1 ms intervals. The system 
timer of the MiniOS7 will call INT 9 every 1 ms and call INT 0x1C every 
55 ms. The timer function of the library is linked to associated with 
called by hooked to INT 9 and will call any custom timer function. 
 
The TimerOpen() function is used to start the I-7188XA(D) timer, and 
this function must be inserted at the beginning of the program. The 
TimerClose() function is used to stop the timer. The sample code is as 
follows: 

 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\Timer folder for more 
information. 

 
unsigned long time iTime; 
 
InitLib();   /* Initiate the 7188xa library */ 
TimerOpen(); /* Begin using the 7188XA timer function */ 
while(!quit) 
{ 

if(Kbhit()) 
TimerResetValue(); /* Reset the main time ticks to 0 */ 

 
iTime=TimerReadValue();  /* Read main time ticks */ 

} 
TimerClose(); /* Stop using the 7188XA timer function */ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 70 

4.11  Using Digital Input and Digital output 
The I-7188XA(D) provides 2 DI channels and 2 DO channels. The 
SetDo1On(), SetDo1Off(), SetDo2On() and SetDo2Off() functions can 
be used to control the two DO channels, and the GetDi1() and GetDi2() 
functions can be used to read the states of the two DI channels. 
 
For DI and DO wiring information, please refer to Section 1.4.6 DI and 
DO Wire Connection. 
 
The wiring for a DO application is as follows: 
 

 
 
 

DO1 
 
DO2 
 
DI1 
 
DI2 
 
TXD4 
 
RXD4 
 
GND 
 
TXD3 
 
RXD3 
 
INIT* 
 
D2+ 
 
D2- 
 
Vs+ 
 
GND 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 71 

The sample code for retrieving and setting DI and DO is as follows. 

 
Refer to the demo programs in the 
CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\IO_Pin folder for more 
information. 

 
int Do1, Do2 

 
InitLib();  /* Initiate the 7188xa library */ 

 
Print("DI1=%s\n\r", GetDi1()?"High":"Low"); /* Read the state of DI1 */ 
Print("DI2=%s\n\r", GetDi2()?"High":"Low"); /* Read the state of DI2 */ 

 
Do1=GetDo1();  /* Read the state of DO1 */ 
Print("DO1=%s\n\r", Do1?"High":"Low"); 
if(!Do1) 

SetDo1On(); /* Set the DO1 to ON */ 
else 

SetDo1Off(); /* Set the DO1 to OFF */ 
  

Do2=GetDo2();  /* Read the state of DO2 */ 
Print("DO2=%s\n\r", Do1?"High":"Low"); 
if(!Do2) 

SetDo2On(); /* Set the DO2 to ON */ 
else 

SetDo2Off(); /* Set the DO2 to OFF */ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 72 

4.12  Using the I/O Expansion Bus 
As there are many serial interface devices available today, the I/O 
expansion bus includes both serial and parallel interfaces. The parallel 
interface is very similar to an ISA bus, so the old ISA bus design can be 
migrated to the I/O expansion bus with a minimum amount of alteration. 
The I/O pins of the serial bus are programmable and can be 
programmed as either D/I or D/O. 
 
The features of these serial devices are as follows: 
 Smaller size compared to parallel devices 
 Lower cost compared to parallel devices 
 Easier to design for isolated applications 

 
The serial interface of the I/O expansion bus makes connecting to these 
serial devices very easy. 
 
 

4.12.1 Definition of an I/O Expansion Bus 
The I/O expansion bus of the I-7188XA(D) module can be divided into 3 
groups as follows: 
1. Power supply and reset signals: VCC, GND, RESET and /RESET 
2. Parallel Bus: 
 System clock: CLOCKA 
 Asynchronous ready control: ARDY 
 Address bus: A0 ~ A7 
 Data bus: D0 ~ D7 
 Interrupt control: INT0, INT1 and INT4 
 Chip select and read/write strobe: /CS, /WR and /RD 

3. Serial Bus: TO_0, TO_1, TI_0, TI_1, SCLK, DIO9, DIO4 and DIO14 
 
 
 
 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 73 

The definition of an I/O expansion bus is given as follows: 
 
 

 
 

 
J2 pin definition and description: 
No Name Description 
1 GND PCB ground 
2 GND PCB ground 
3 CLOCKA CPU synchronous clock output 
4 ARDY Asynchronous ready input (level sensitive, OPEN=ready) 
5 INT0 Channel 0 interrupt request input (asynchronous, active high) 
6 INT1 Channel 1 interrupt request input (asynchronous, active high) 
7 VCC PCB power supply 
8 RESET Power-up reset pulse (active high) 
9 GND PCB ground 
10 /RESET Power up reset pulse (active low) 
11 TO_0 CPU Timer output 0(can be used as a programmable D/I/O) 
12 TO_1 CPU Timer output 1(can be used as a programmable D/I/O) 
13 TI_0 CPU Timer input 0 (can be used as a programmable D/I/O) 
14 TI_1 CPU Timer input 1 (can be used as a programmable D/I/O) 
15 SCLK Common serial clock output for 7188 series modules 
16 DIO9 Programmable D/I/O bit 
17 DIO4 Programmable D/I/O bit 
18 DIO14 Programmable D/I/O bit 
19 VCC CPU power supply 
20 VCC CPU power supply 

J2 Pin 

J3 Pin 

Pin 2 

Pin 1 

Pin 20 

Pin 19 

Pin 2 

Pin 1 

Pin 20 

Pin 19 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 74 

 CLOCKA: 40M 
 ARDY: This pin is left OPEN for applications that do not require 

the use of wait states 
 INT0 and INT1: These two pins are left OPEN for that do not 

require an interrupt applications 
 TO_0 and TO_1: These pins can be used as the timer output of 

the CPU or programmable DI/O 
 TI_0 and TI_1: These pins can be used as the timer input of the 

CPU or programmable D/I/O 
 DIO4, DIO9 and DIO14: Programmable DI/O bit 
 SCLK: The I-7188XA(D) uses this signal as a CLOCK source to 

drive all onboard serial devices so it is always programmed as DO. 
Changing this signal to other configurations will cause serious 
errors. This signal to drive external serial can be used devices 
without any side effects. 

 
J3 pin definition and description: 
No Name Description 
1 A0 Address bus 
2 D0 Data bus 
3 A1 Address bus 
4 D1 Data bus 
5 A2 Address bus 
6 D2 Data bus 
7 A3 Address bus 
8 D3 Data bus 
9 A4 Address bus 
10 D4 Data bus 
11 A5 Address bus 
12 D5 Data bus 
13 A6 Address bus 
14 D6 Data bus 
15 A7 Address bus 
16 D7 Data bus 

17 INT4 Interrupt request input for channel 4 (asynchronous, active 
high) 

18 /WR Write strobe output (synchronous, active low) 
19 /CS Chip select output (synchronous, active low) 
20 /RD Read strobe output (synchronous, active low) 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 75 

 Address bus (output): A0 ~ A7 
 Data Bus (tri-state, bi-direction): D0 ~ D7 
 INT4: This pin is left OPEN for applications that do not require an 

interrupt 
 /CS, /RD and /WR: These 3 signals will be synchronous to 

CLOCKA (Pin3 of JP2) and asynchronous to ARDY (Pin4 of JP2) 
 The /CS will be active if the program needs to input/output data 

from I/O address 0 to 0xff. 
 
Note: Refer to “I/O Expansion Bus for 7188X/7188E User’s Manual” 
for more information. 
 
 

4.12.2 I/O Expansion Boards 
I/O Expansion Boards for prototyping and testing: 
Board Description 
X000 Prototype Board (Small size)  
X001 Prototype Board (Large size) 
X003 Self-test 

 
I/O Expansion Boards for DI and DO: 
Board Description 
X119 7 DI channels + 7 DO channels (Without case) 

 
I/O Expansion Boards for RS-232 
Board Description 
X500 1 9-wire RS-232 channel (Without case) 

X560 3 3-wire RS-232 channels + 8M bytes NAND Flash (Without 
case) 

 
I/O Expansion Boards for storage devices: 
Board Descriptions 
X600 4M bytes NAND Flash 
X601 8M bytes NAND Flash 
X607 128K battery backup SRAM  
X608 512K battery backup SRAM  

 
Note: Refer to “I/O Expansion Bus for 7188X/7188E User’s Manual” 
for more information. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 76 

5. Applications 

5.1 Embedded Controllers 
 

 
 
 
 
 
 
 
 
 
Applications: 
 4500 replacement and enhancement (not compatible) 
 PC-based controller replacement 
 PLC replacement 
 Special controller replacement 

 
The I-7188XA(D) can be used as an embedded controller for general 
applications, meaning that it can be used to replace a Host PC, PLC or 
other special controllers. 
 

Programming Tool TC/BC/MSC 

Debug Tool Via standard input/output (keyboard and monitor of a Host 
PC) 

Man Machine 
Interface 

• MMICON 
• PC keyboard and monitor 
• Touch Screen (RS-232 or RS-485 interface) 

Program Stored in Flash Memory 

Input/Output 

• Onboard DI or DO 
• From an I/O Expansion Bus 
• 7000 series modules can directly control up to 256 

modules giving thousands of I/O points 

  
 

MMICON (or PC or touch-screen) 

RS-232 
RS-485 

 

  
7000 series module 

I-7188XA(D) 

7000 series module 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 77 

RS-485  

 7000 series module  

RS-485 
I-7188XA(D) 
(address-1) 

RS-485  

  

RS-485 
I-7188XA(D) 
(address-n) 

7000 series module 

7000 series module 7000 series module 

5.2 Local Real Time Controller (RTC) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this configuration, the 7000 series modules act as slave devices. The 
control programs are implemented in the Host PC. The operation steps 
are as follows: 
 The PC sends commands to the 7000 series modules and 

receives some input data. 
 The PC analyzes this input data and generates some output data 
 The PC sends commands to the 7000 series modules as output 

data 
 
If there are hundreds of 7000 series modules, it will take the Host PC a 
long time to analyze and control these modules, so the control program 
can be implemented in a local I-7188XA(D). The PC then only has to 
send control arguments to the I-7188XA(D), and the I-7188XA(D) will 
control the local 7000 series modules based on these control arguments. 
In this way, thousands of 7000 series modules can be controlled by the 
PC via the I-7188XA(D). 
Some control functions are timing-critical, so the local I-7188XA(D) can 
handle these functions in real time without the need for control by Host 
PC. 

7520 

Host PC 
  

RS-232 RS-485 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 78 

5.3 Remote Local Controller
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this configuration, the control program is implemented series a local 
I-7188XA(D). The I-7188XA(D) will directly control the 7000 series 
modules based on these control arguments. 
 
The Host PC can then access the remote I-7188XA(D) regarding the 
following items: 
 Query and record the status of the remote system 
 Download control arguments to the remote I-7188XA(D) 

 
The remote I-7188XA(D) can communicate with the Host PC regarding  
the following items: 
 Emergency event notification and response 
 Remote system status notification 

7000 series module 

RS-485 

 

  

I-7188XA(D) 

Host PC 
 

RS-232 

RS-232 

Telephone line 

 

7000 series module 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 79 

5.4 PLC I/O Expansion Application 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Most PLCs contain a Man Machine Interface that was originally 
designed for MMI applications. The I-7188XA(D) can use this interface 
to construct a bridge between a PLC and the 7000 series modules. 
 
The I-7188XA(D) can directly read/write from/to the internal memory of 
the PLC, meaning that the PLC can access the 7000 series input 
modules as follows: 
 The I-7188XA(D) sends a command to the 7000 series input 

modules 
 The I-7188XA(D) writes this data to the internal memory of the 

PLC 
 The PLC accesses this data from its internal memory 

 
The PLC can control the 7000 series output modules as follows: 
 The PLC writes data to its internal memory 
 The I-7188XA(D) reads the output data from the memory of the 

PLC 
 The I-7188XA(D) sends a command to its 7000 output modules 

 
 

 
 

   

PLC 

I-7188XA(D) 

7000 series modules 

COM1: RS-232 

COM2: RS-485 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 80 

In this way, the input data from the 7000 series modules can be 
displayed on a touch screen. In addition the output from the 7000 series 
modules can be controlled from a touch screen. 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 81 

5.5 Radio Modem Application
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SST-900/SST-2400 settings: (Device A) 
 RS-232 
 Half-duplex mode 
 Synchronous way 
 Slave state 
 Baud Rate=9600 
 Channel=3 
 Frequency=915.968MHz 

 
SST-900/SST-2400 settings: (Device B/C/D) 
 RS-485 or RS-232 
 Half-duplex mode 
 Synchronous way 
 Slave state 

 

 

 

  
Device B 

Device C Device D 

Device A 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 82 

 Baud Rate=9600 
 Channel=3 
 Frequency=915.968MHz 

 
As the I-7188XA(D) is an embedded controller, and is programmable, it 
can be used as a bridge between the SST-900 and any external 
devices, such as a PLC, a controller or other 7000 series modules. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 83 

5.6 An Application Using 4 COM Ports (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COM1: The PLC can access the I/O state of the 7000 series modules 
COM2: Directly controls the 7000 series input/output modules 
COM3: MMICON is used as the local MMI 
COM4: The PC is used to monitor and record the system data. 

  

  

 

   

PC PLC 

MMICON SST-900/SST-2400 
Radio Modem 

7000 Series 

SST-900/SST-2400 
Radio Modem 

I-7188XA(D) 

COM2: RS-485 

COM1: RS-232 COM4: RS-232 

COM3: RS-232 

7000 series modules 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 84 

5.7 An Application Using 4 COM Ports (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COM1: Links to the remote Host PC 
COM2: Directly controls the 7000 series input/output modules 
COM3: The TOUCH-200 is used as the local MMI 
COM4: The Card reader is used as a standard input device. 

TOUCH-200 
Touch screen 

Modem   

   

Card Reader 

I-7188XA(D) 

COM2: RS-485 

COM1: RS-232 COM4: RS-232 

COM3: RS-232 

7000 series modules 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 85 

Appendix A: What is MiniOS7 
MiniOS7 is an embedded operating system developed by ICP DAS Co., 
Ltd. that is designed to replace ROM-DOS in 7188 series modules. 
Various companies have created several brands of DOS. In all cases, 
DOS (whether PC-DOS, MS-DOS or ROMDOS) is a set of commands 
or code that tells the computer how to process information. DOS runs 
programs, manages files, controls information processing, directs input 
and output, and performs many other related functions. 
 
MiniOS7 provides all equivalent functions of ROM-DOS while, in 
addition, providing user specific functions for the I-7188XA(D). 
 
Below is a comparison table between MiniOS7 and ROM-DOS as 
follows: 
 MiniOS7 ROM-DOS 
Power-up time 0.1 sec 4 ~ 5 sec 
More compact size <64K bytes 64K bytes 
Support for I/O Expansion Bus Yes No 
Support for ASIC Key Yes No 
Flash ROM management Yes No 
O.S. update (download) Yes No 
Built-in hardware diagnostic functions Yes No 
Direct control of 7000 series modules Yes No 
Customer ODM functions Yes No 
Free of charge Yes No 

 
Note: ICP DAS reserves the right to change the specifications of 
MiniOS7 without notice. 
 

The typical command set for MiniOS7 
Command Description 

LED5 pos value 
Displays a HEX value in the specified position of 5-digit 
LED 

USE NVRAM 
Accesses the service routine to read/write from/to the 
NVRAM 

USE EEPROM 
Accesses the service routine to read/write from/to the 
EEPROM 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 86 

USE FLASH 
Accesses the service routine to read/write from/to the 
Flash Memory 

USE COM2 /option 
Accesses the service routine to send/receive to/from 
COM2 

DATE [mm/dd/yyyy] Sets the date of the RTC 
Time [hh:mm:ss] Sets the time of the RTC 
MCB Tests the current memory block 

UPLOAD 
Stores the MiniOS7 image file in the SRAM of the 
I-7188XA(D) (this command is only used to upgrade 
MiniOS7) 

BIOS1 
Stores the MiniOS7 image file in the Flash memory of 
the I-7188XA(D) (this command only used to upgrade 
MiniOS7) 

LOAD 
Downloads the user program file to the Flash Memory 
of the I-7188XA(D) 

DIR [/crc] 
Lists the information of all files stored in the Flash 
Memory of the I-7188XA(D) 

RUN fileno Executes the file with the prescribed file number 
Filename Executes the file with the prescribed file name 
DELETE or DEL Deletes all files stored in the Flash Memory. 
RESET Resets the CPU 
DIAG [option] Performs hardware diagnostics 
BAUD baudrate Sets a new value for the Baud Rate of COM1 
TYPE filename [/b] Lists the contents of a file 
REP [/#] command Repeats the execution of the same command # times 
RESERVE [n] Reserve n Flash Memory sectors for a program file 
LOADR Downloads files to the SRAM 

RUNR [option] 
Runs the program stored in the SRAM of the 
I-7188XA(D) (downloaded using the LOADR command) 

I/INP/IW/INPW port Reads data from the hardware Port 
O/OUTP/OW/OUTPW 
port value 

Outputs data to the hardware Port 

More …… 
 
Note: For more detailed information regarding MiniOS7, please refer to 
CD:\Napdos\MiniOS7\document\Lib_Manual_For_7188XABC\index.htm or 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 87 

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/document/lib_man
ual_for_7188xabc/index.htm 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 88 

Appendix B: MiniOS7 Utility and 7188XW 
Both the MiniOS7 Utility and 7188xw.exe application will allow users to 
easily upgrade to the latest version of MiniOS7. The MiniOS7 Utility and 
7188xw.exe application can be used to perform essential configuration 
functions and for downloading programs to the MiniOS7 embedded in 
the I-7188XA(D) controller. 
 

MiniOS7 Utility 
The MiniOS7 Utility program provides three main functions: 
 Upgrade the MiniOS7 image 
 Download program files to the Flash Memory 
 Configure the COM port settings 

 
MiniOS7 utility location 
The MiniOS7 utility is located in the 
CD:\NAPDOS\MINIOS7\UTILITY\MiniOS7_utility folder on the CD or at 
http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/ 
on the web 
 
Installation procedure 
Step 1: Locate and execute minios7_utility_v311.exe from the 

CD:\Napdos\MiniOS7\utility\MiniOS7_utility\ folder. 
 
Step 2: After completing the installation, a new folder, ICPDAS, will be 

added to the programs section of the start menu. Clicking on 
this folder will allow access to the MiniOS7 Utility files. See the 
diagram below for details. 

 
 
 
 
 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 89 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

1 

2 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 90 

7188XW 
The 7188xw.exe application is the main utility for the I-7188XA(D), and 
can be used to perform the following functions: 
 Download user program files from a Host PC into the memory 

unit of the I-7188XA(D) module.  
 Download the MiniOS7 image file from a Host PC into the 

Flash Memory of the I-7188XA(D) controller and upgrade the 
MiniOS7. 

 Show a debug string on the monitor of a Host PC 
Three standard output library functions, such as Putch function, 
Print and Puts, will allow a main control unit to send an output 
string to the monitor of a Host PC. 

 Enter data into I-7188XA(D) module using the Host PC 
keyboard 
Three standard input library functions, such as Getch, Scanf and 
LineInput, will allow the main control unit to read keyboard input 
from a Host PC. 

 
7188xw.exe location 
The 7188xw.exe is located in the CD:\Napdos\MiniOS7\utility\ folder or at 
http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/ on the web. 
 
7188xw.exe command line options for MiniOS7 
Option Description 
/c# Uses COM# of the Host PC 

/b# 
Sets the Baud Rate for the COM port on the Host PC (default is 
115200) 

/s# 
Sets the number of display rows on the screen (default is 25, 
max. is 50) 

 
7188xw.exe Hot-key 
Command Description 
F1 Shows the 7188xw.exe help messages 

Alt_F1 
Shows the 7188xw.exe help messages using the Chinese (Big5) 
character set 

Ctrl_F1 
Shows the 7188xw.exe help messages using the Chinese 
(GB2312) character set 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 91 

Alt_1 Uses COM1 on the Host PC 
Alt_2 Uses COM2 on the Host PC 
Alt_3 Uses COM3 on the Host PC 
Alt_4 Uses COM4 on the Host PC 
Alt_5 Uses COM5 on the Host PC 
Alt_6 Uses COM6 on the Host PC 
Alt_7 Uses COM7 on the Host PC 
Alt_8 Uses COM8 on the Host PC 
Alt_9 Uses COM9 on the Host PC 

Alt_A 
Switches between normal mode and ANSI-Escape-code-support 
mode 

Alt_C Switches to command mode. Supports commands: 
b#: Sets a new Baud Rate for the COM ports on the Host PC 
c#: Uses COM# on the Host PC 
n/e/o: Sets the parity to none/even/odd 
5/6/7/8: Sets the data bits to 5/6/7/8 
p#: Sets working directory of the Host PC 
q: Quits command mode 

Alt_D Sets the date of the RTC to the date on the Host PC 
Alt_T Set the time of the RTC to the time on the Host PC 

Alt_E 
Used to download a file to memory. Alt_E should be pressed only 
after the “Press ALT_E to download file!” message is shown on 
the screen. 

Alt_H Toggles between Hex/ASCII display mode 

Alt_L 
Toggles between normal/line mode. In line mode, all characters 
pressed will not be sent to the COM Port until the ENTER key is 
pressed, and it is designed for testing 7000 series modules 

Alt_X Quits the 7188xw.exe application 

F2 
Sets the file name for downloading (without initiating a download 
operation) 

F5 Runs the program specified by F2 and arguments set by F6 

F6 
Sets the arguments of the execution file set by F2. (10 arguments 
maximum. If set to less than 10 arguments, add ‘*’ to end) 

Ctrl_F6 Clears the screen 
F8 F8=F9+F5 
F9 Downloads the file specified by F2 to the FLASH memory 
Alt_F9 Downloads all files specified by ALT_F2 to the FLASH memory 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 92 

F10 Downloads the file specified by F2 to the SRAM and executes it 
Alt_F10 Downloads all files specified by ALT_F2 to the SRAM memory 

Ctrl_B 
Sends a BREAK signal to the COM port of the Host PC that is 
currently being used by 7188xw.exe 

More… 
 
For more detailed information regarding the 7188xw.exe application, 
please refer to the index.htm file in the 
CD:\Napdos\MiniOS7\document\Lib_Manual_For_7188XABC\ folder or at 
http://ftp.icpdas.com.tw/pub/cd/8000cd/napdos/minios7/document/lib_
manual_for_7188xabc/ on the web. 
 
Downloading a file to the I-7188XA(D) controller using the 
7188xw.exe application 
Step 1: Power-off the I-7188XA(D). Connect the INIT* pin to the GND 

pin and power-on the I-7188XA(D) at the same time. 
 
 
 
 
 
 
 
 
 
Step 2: After the I-7188XA(D) has been switched on, disconnect the 

INIT* pin from the GND pin. 
 
Step 3: Open an MS-DOS command prompt window using the steps 

shown bellow. 
 
 
 
 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 93 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 4: Type “cd c:\7188XA\Demo\BC_TC\Hello\Hello_C\” then press 
<Enter>. (Assume user copy the 7188XA folder to C drive letter. 
Refer to Step2 in Sec.2.1) 

 
 
Step 5: Execute the 7188xw.exe application as shown in the following 

figure. 
 

 

  

 

3.1 3.2 

3.3 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 94 

Step 6: Press <F2> and then type the filename “Hello.exe” and press 
<Enter>. 

 
 
Step 7: Press <F8> to download the Hello.exe file to the I-7188XA(D) 

and execute the program. 

 
 
Notes: A description of the Hotkey functions is as follows: 
F8: Download a file to FLASH Memory, and then execute the program 
F9: Download a file to FLASH Memory. 
F10: Download a file to SRAM, and then execute the program. 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 95 

Step 8: Type “dir” and press <Enter> to check that the files are stored in 
the Flash Memory of the I-7188XA(D). 

 
 
Step 9: Type “del /y” and press <Enter> to delete all files stored in the 

Flash Memory of the I-7188XA(D). 

 
 
Note: The MiniOS7 only supports the delete all command. Individual 
files cannot be selected for deletion. 
 

Step 10: Press <Alt + X> to quit the MiniOS7. 
 
 
Upgrading MiniOS7 using the 7188xw.exe application 
Step 1: Connect the I-7188XA(D) to the COM Port of the Host PC using 

the CA0910 cable. Refer to the wiring diagram in Section 2.2 for 
details. 

 

Step 2: Determine the latest version of the MiniOS7 image file. 
The format of the image file name is: TTYYMMDD.img 
TT: TYPE of product. 
YY: Year that this image was released 
MM: Month that this image was released 
DD: Day that this image was released 

 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 96 

Note: The MiniOS7 image file can be found in the 
CD:\NAPDOS\MiniO7\ directory on the companion CD. The latest 
MiniOS7 version can be downloaded from: 
http://ftp.icpdas.com/pub/cd/8000cd/napdos/7188xabc/7188xa/os_image/ 
 
Step 3: From the Host PC, go to the directory where the image file is 

stored, then execute the 7188xw.exe application to connect the 
Host PC to the I-7188XA(D) controller. 

 
Step 4: Use the “UPLOAD” command, then press <ALT + E> after the 

“Press ALT_E to download file!” message is shown on the 
screen. 

 
 

Step 5: Type the image filename (for example: xa050701.img) then 
press <ENTER>. 

 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 97 

Step 6: Wait for the upload to finish. (The image file will be stored in the 
SRAM.) 

 
Step 7: Type the “bios1” command in the I-7188XA(D) command line. 

(The OS will check the image file stored in the SRAM, and then 
display the version information. If the image file is correct, it will 
be written to the Flash Memory.) 

 
 
Step 8: It will take about 10 seconds to upgrade MiniOS7. After the 

update has finished, the system will automatically reboot. If this 
does not occur, the system must be rebooted manually. 

 
 
 
 
 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 98 

Step 9: Type the “ver” command to check the MiniOS7 version number. 
 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 99 

Appendix C: Comparison Table 
Feature comparison table between the 7188 and the 7188X series: 
 I-7188XA(D) I-7188XB(D) I-7188XC(D) I-7188(D) 
CPU clock 80188, 40MHz 80188, 40MHz 80188, 20MHz 80188, 40MHz 

SRAM 512K 256K(I-7188XB) 
512K(I-7188XB/512) 128K 256K 

Flash Memory 512K 512K 256K 
(512K for ODM) 256K/512K 

COM1 
RS-232 with 
modem control or 
RS-485 with 
internal self-tuner 

RS-232 or RS-485 
with internal 
self-tuner 

RS-232 or RS-485 
with internal 
self-tuner  

RS-232 with 
modem control or 
RS-485 

COM2 
RS-485 with 
internal self-tuner, 
3000V isolation 

RS-485 with 
self-tuner inside  

RS-485 with 
self-tuner inside  RS-485 

COM3 RS-232 (TxD, RxD) No COM No COM RS-232 (TxD, RxD) 

COM4 RS-232 (Txd, Rxd) No COM No COM RS-232 (TxD, RxD) 

User defined pins 0 14 3 0 

Modem control COM1 No No COM1 

RTC Yes Yes No Yes 

64-bit hardware 
unique serial 
number 

Yes Yes No No 

EEPROM 2K bytes 2K bytes 2K bytes 2K bytes 

D/I (3.5V~30V) 2 channels 1 channel 2 channels 0 

D/O (100mA, 30V) 2 channels 1 channel 3 channels 0 

I/O expansion bus Yes Yes Yes No 

Support for ASIC 
Key Yes Yes Yes No 

Operating system MiniOS7 MiniOS7 MiniOS7 MiniOS7 

Programming 
language TC/MSC/BC TC/MSC/BC TC/MSC/BC TC/MSC/BC 

Program 
download Port COM4 COM1 COM1 COM4 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 100 

Appendix D: Library Function List 
The table below lists the most commonly used functions. For more 
details of all functions, refer to the instructions in the 
CD:\Napdos\MiniOS7\document\Lib_Manual_For_7188XABC\index_e.htm file or 
http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/document/lib_man
ual_for_7188xabc/index_e.htm on the web. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type 1: Standard IO 
 

Function Description 
Kbhit Checks if any keyboard input data is currently available in the input 

buffer of COM1. 
Getch Waits until a single character is received from keyboard input. 
Ungetch Returns a single character to the input buffer of COM1. 
Putch Sends a single character to COM1. 
Puts Sends a string to COM1. 

Scanf Retrieves formatted data such as scanf in the C language (Cannot 
used on MSC/VC++, only TC/BC) 

Print Prints formatted data such as printf in the C language. 
ReadInitPin Reads the status of the INIT* pin. 
LineInput Inputs a single line from StdInput. 

…More… 
There are more user functions for Standard IO. For more detailed 
information, please refer to the 7188xa.h file and 
CD:\Napdos\MiniOS7\document\Lib_Manual_For_7188XABC\index.htm 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 101 

Note: The Print and printCom function cannot be used simultaneously 
in the same program. 
 
 Kbhit() 

Function: Checks whether any keyboard input data is currently 
available in the input buffer. 

Syntax: int Kbhit(void); 
Header:  #include ”7188xa.h” 
Description: Checks if any data is currently available in the input 

buffer. 
Return: 0: For no data input. 

Other: There is data in the input buffer, and the return 
value is the next data in the buffer. If the next data 
is “\0”, the function will return -1 (0xFFFF). 

Example: 
#include <7188xa.h> 
void main() 
{ 

int quit=0, data; 
InitLib(); 
Puts("\n\rPress any key to show ASCII ('Q' to quit):\n\r"); 
while(!quit){ 

if(Kbhit()){ 
data=Getch(); 
if(data=='Q') quit=1; 
Putch(data); 
Print(" ASCII is: %d\n\r", data); 
Puts("\n\rPress any key to show ASCII ('Q' to quit):\n\r"); 

} 
} 

} 
 
 Getch() 

Function:  Waits until a character is received from keyboard input. 
Syntax:  int Getch(void); 
Header:  #include ”7188xa.h” 
Description: Reads a single character from the input buffer. If there is 

no input in the data buffer, the function will wait until the 
input buffer receives some data. 

Return Value: 0 to 255. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 102 

Example: Please refer to “Kbhit()” for an example. 
 
 Ungetch() 

Function:  Put a single character to the input buffer. 
Syntax:  int Ungetch(int data); 
Header:  #include ”7188xa.h” 
Description: If there is no data in the input buffer when Ungetch() is 

called, next time the Getch() function is called, it will 
return the data. 
Data: 0 to 255. If the data is > 255, only the low byte will 
be sent. 

Return: On success, returns NoError. On error (i.e. the buffer is 
full) returns 1. 

Example: Please refer to “Kbhit()” for an example of Getch(). 
 
 Putch() 

Function:  Displays a single character on the screen. 
Syntax:  void Putch(int data); 
Header:  #include ”7188xa.h” 
Description: Data: 0 to 255. If the data is > 255, only the low byte will 

be sent. 
Example:  Please refer to “Kbhit()” for an example. 

 
 Puts() 

Function:  Displays a string on the screen. 
Syntax:  void Puts(char *str); 
Header:  #include ”7188xa.h” 
Description: Puts will call Putch() to send the string. 

str: The pointer to the string to be sent. 
Example:  Please refer to “Kbhit()” for an example. 

 
 Scanf() 

Function: Scans a character from the input and is similar to the 
scanf() function. (This function cannot be used with MSC 
/VC++) 

Syntax: int Scanf(char *fmt, ...); 
Header: #include ”7188xa.h” 
Description: Returns the number of input fields successfully scanned, 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 103 

converted, and stored. The return value does not include 
any scanned fields that were not stored. 

Return: 0: No fields were stored. 
EOF: Attempts to read have reached the end of the 

string. 
Example: See CD:\Napdos\7188XABC\7188XA\Demo\MSC\COM_ 

Ports\C_Style_IO\ 
 
 Print() 

Function: Prints a formatted character to the screen, and is similar 
to the printf() function in the C language. 

Syntax: int Print(char *fmt,...); 
Header: #include ”7188xa.h” 
Description: This function is used instead of printf(), and the only 

difference between Print() and printf() is that Print() does 
not convert the characters “\n” to “\n” + “\r”. That is “\n” 
only sends the code 0x0A, not 0x0A + 0x0D, so “\n\r” 
has to be used for “new line and return”. The printed 
message is sent to COM4. (Default parameters are 
115200, N, 8, 1) 

Input Parameters: Please refer to the standard function printf() in the 
C language. 

Return: The character number to be sent out. 
Example: Please refer to “Kbhit()” for an example. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 104 

Type 2: COM port 
Function Description 

InstallCom Installs the COM Port driver. The COM Port number is 
not assigned 

InstallCom1 Installs the driver for COM1 

InstallCom2 Installs the driver for COM2 
InstallCom3, InstallCom4 etc. are similar 

RestallCom Uninstalls the drivers for the COM Port. The COM Port 
number is not assigned 

RestallCom1 Uninstalls the driver for COM1. Assigned to COM1 
RestallCom2 and etc are similar 

IsCom Check if Com has data. The COM Port number is not 
assigned 

IsCom1 Checks if any data is waiting in the COM1 buffer 

IsCom2… Checks if any data is waiting in the COM2 buffer 
IsCom3, IsCom4 etc. are similar 

ClearCom Clears all the data currently stored in the COM Port 
Buffer. The COM Port number is not assigned 

ClearCom1 Clears all the data currently stored in the COM1 buffer. 

ClearCom2 Clears all the data currently stored in the COM2 buffer. 
ClearCom3, ClearCom4 etc. are similar 

ReadCom Reads the data from COM Port buffer. The COM Port 
number is not assigned 

ReadCom1 Reads data from the COM1 buffer 

ReadCom2 Reads data from the COM2 buffer 
ReadCom3, ReadCom4 etc. are similar 

ToCom Sends data to the COM Port. The COM Port number is 
not assigned 

ToCom1 Sends data to the COM1 

ToCom2 Sends data to the COM2 
ToCom3, ToCom4 etc. are similar 

printCom Prints any data currently stored in the COM Port buffer. 
The COM Port number is not assigned 

printCom1 Prints any data currently stored in the COM1 

printCom2 Prints any data currently stored in the COM2 
printCom3, printCom4 etc. are similar 

…More… There are more functions available for use with COM 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 105 

Ports. Please refer to the 7188xa.h file and 
CD:\Napdos\7188\miniOS7\manual\index.html for 
more detailed information. 

 
Note: The Print and printCom function cannot be used simultaneously 
in the same program. 
 
 InstallCom() 

Function: Installs the driver for the COM Port. 
Syntax: int InstallCom(int port, unsigned long baud, int data, 

int parity, int stop); 
Header: #include ”7188xa.h” 
Description: Installs the driver for the COM Port. The COM Port 

number is not assigned and can be modified using the 
“port” parameter. 
port: assigns the COM port number 
baud: Baud Rate, the default Baud Rate for the 
I-7188XA(D) is 115200 

Example: 
#include <7188xa.h> 
void main() 
{ 

int quit=0, data, i, port=1;  /*port=1, uses COM1*/ 
InitLib(); 
InstallCom(port,115200,8,0,1);  /*installs the COM port driver*/ 
for(i=0; i<10; i++) 

printCom(port,"Test %d\n\r",i);  /*prints data to the COM Port*/ 
while(!quit) { 

if(IsCom(port)) {  /*checks if any data is in the COM Port buffer*/ 
data=ReadCom(port);  /*reads data from the COM Port buffer*/ 
ToCom(port,data);  /*sends data to the COM Port buffer*/ 
ClearCom(port);  /*clears all the data in the COM Port buffer*/ 
if(data=='Q') quit=1;  /*if 'Q' is received, exit the program*/ 

} 
} 
RestoreCom(port);  /*uninstalls the driver for COM Port */ 

} 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 106 

 InstallCom1() 
Function: Installs the driver for COM1. 
Syntax: int InstallCom1(unsigned long baud, int data, int 

parity, int stop); 
Header: #include ”7188xa.h” 
Description: Installs the driver for COM1, and is assigned to COM1 

baud: Baud Rate, the default Baud Rate for the 
I-7188XA(D) is 115200 

Example: 
#include <7188xa.h> 
void main() 
{ 

int quit=0,data; 
InitLib(); 
InstallCom1(115200,8,0,1);  /*install the driver for COM1*/ 
while(!quit) { 

if(IsCom1()) {  /*checks if any data is in the COM1 buffer*/ 
data=ReadCom1();  /*reads data from COM1*/ 
ToCom1(data);  /*sends data to COM1*/ 
if(data==’q’) quit=1;  /*if ‘q’ is received, exit the program*/ 

} 
} 

RestoreCom1();  /*uninstalls the driver for COM1*/ 
} 

 
 RestoreCom() 

Function: Uninstalls the driver for the COM Port. The COM Port 
number is not assigned. 

Syntax: int RestoreCom(int port); 
Header: #include ”7188xa.h” 
Description: Uninstalls the driver for the COM Port. The COM Port 

number is not assigned and can be modified using the 
“port” parameter. 
port: assigns the COM Port number 

Example: Please refer to “InstallCom()” for an example. 
 
 RestoreCom1() 

Function: Uninstall the driver for COM1. 
Syntax: int RestoreCom1(void); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 107 

Header: #include ”7188xa.h” 
Description: Uninstall the driver for COM1 and is assigned to COM1 
Example: Please refer to “InstallCom1()” for an example. 
 

 IsCom() 
Function: Checks whether there is any data stored in the COM Port 

buffer. The COM Port number is not assigned. 
Syntax: int IsCom(int port); 
Header: #include ”7188xa.h” 
Description: Checks whether there is any data stored in the COM 

Port buffer. The COM Port number is not assigned and 
can be modified using the “port” parameter. 
port: assigns the COM port number 

Example: Please refer to “InstallCom()” for an example. 
 

 IsCom1() 
Function: Checks whether there is any data stored in the buffer of 

COM1. 
Syntax int IsCom1(void); 
Header: #include ”7188xa.h” 
Description: Checks whether there is any data stored in the buffer of 

COM1 
Example: Please refer to “InstallCom1()” for an example. 
 

 ReadCom() 
Function: Reads data from the COM Port buffer. The COM Port 

number is not assigned. 
Syntax: int ReadCom(int port); 
Header: #include ”7188xa.h” 
Description: Reads data from the COM Port buffer. The COM Port 

number is not assigned and can be modified using the 
“port” parameter. 
port: assigns the COM Port number 

Example: Please refer to “InstallCom()” for an example. 
 

 ReadCom1() 
Function: Reads data from the buffer of COM1. 
Syntax: int ReadCom1(void); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 108 

Header: #include ”7188xa.h” 
Description: Reads data from the buffer of COM1. Assigned to 

COM1. 
Example: Please refer to “InstallCom1()” for an example. 
 

 ClearCom() 
Function:  Clears the data currently stored in the COM Port buffer. 

The COM Port number is not assigned. 
Syntax: int ClearCom(int port); 
Header: #include ”7188xa.h” 
Description: Clears the data currently stores in the COM Port buffer. 

The COM Port number is not assigned and can be 
modified using the “port” parameter. 
port: assigns the COM Port number 

Example: Please refer to “InstallCom()” for an example. 
 

 ClearCom1() 
Function: Clears the data currently stored in the buffer of COM1. 
Syntax: int ClearCom1(void); 
Header: #include ”7188xa.h” 
Description: Clears the data currently stored in buffer of COM1. 

Assigned to COM1. 
Example: Please refer to “InstallCom1()” for an example. 
 

 ToCom() 
Function: Sends data to the COM Port. The COM Port number is 

not assigned. 
Syntax: int ToCom(int port); 
Header: #include ”7188xa.h” 
Description: Sends data to the COM Port. The COM Port number is 

not assigned and can be modified using the “port” 
parameter. 
port: assigns the COM Port number 

Example: Please refer to “InstallCom()” for an example. 
 

 ToCom1() 
Function: Sends data to COM1. 
Syntax: int ToCom1(void); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 109 

Header: #include ”7188xa.h” 
Description: Sends data to COM1. Assigned to COM1. 
Example: Please refer to “InstallCom1()” for an example. 
 

 printCom() 
Function: Prints data to COM and PC. The COM Port number is not 

assigned. 
Syntax: int printCom(int port,char *fmt,...); 
Header: #include ”7188xa.h” 
Description: Prints data from the COM Port buffer. The COM Port 

number is not assigned and can be modified using the 
“port” parameter. Produces a formatted output, similar to 
printf() from the standard C library. 

Example: Please refer to “InstallCom()” for an example. 
 

 printCom1() 
Function: Prints data from the buffer of COM1. 
Syntax: int printCom_1(char *fmt,...); 
Header: #include ”7188xa.h” 
Description: Prints data from the buffer of COM1. Produces a 

formatted output, similar to printf() from standard C 
library. 

Example: This function is similar to printCom(). Please refer to 
“InstallCom()” for an example. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 110 

Type 3: EEPROM 
Function Description 

EE_WriteEnable Sets the EEPROM to write-enable mode 
EE_MultiWrite Writes data to the EEPROM 
EE_WriteProtect Sets the EEPROM to write-protect mode 
EE_MultiRead Reads data from the EEPROM 

…More… 

There are many other user functions related to 
EEPROM. Please refer to the 7188xa.h header file 
and the user manual on the enclosed CD, which can 
be found at 
CD:\Napdos\MiniOS7\document\Lib_Manual_For_7188XABC\ind
ex.htm for more detailed information. 

 
 EE_WriteEnable () 

Function: Sets the EEPROM to write-enable mode. 
Syntax: void EE_WriteEnable (void); 
Header: #include ”7188xa.h” 
Description: Sets the EEPROM to write-enable mode. The EEPROM 

is in write-protect mode by default. EE_WriteEnable() 
must be called before writing data to the EEPROM. 

Example: 
#include <7188xa.h> 
void main() 
{ 

Int data=55, data2; 
InitLib(); 
EE_WriteEnable (); 
EE_MultiWrite(1,10,1,&data); 
EE_WriteProtect(); 
EE_MultiRead(1,10,1,&data2); 
Print("data=%d, Data2=%d", data,data2); 

} 
 
 EE_MultiWrite () 

Function: Writes data to the EEPROM 
Syntax: int EE_MultiWrite(int Block,unsigned Addr,int 

no,char *Data); 
Header: #include ”7188xa.h” 
Description: Writes multi-byte of data to the EEPROM. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 111 

Block: 0 to 7 (a total of 8 blocks). 
Addr: 0 to 255 (each block can contain 256 bytes). 
no: 1 to 16 
Data: The start address of buffer that the data is stored. 

Return Value: On success, returns NoError. 
On error, returns -1. It is say EEPROM is busy, Block is 
invalid or Addr is invalid. 

Example: Please refer to “EE_WriteEnable()” for an example. 
 

 EE_WriteProtect () 
Function: Sets the EEPROM to write-protect mode 
Syntax: void EE_WriteProtect(void); 
Header: #include ”7188xa.h” 
Description: Sets the EEPROM to write-protect mode. The EEPROM 

is in write-protect mode by default. EE_WriteEnable() 
must be called before writing data to the EEPROM. After 
writing the data, it is recommended that EE_WriteProtect 
() be called to return the EEPROM to write-protect mode. 

Example: Please refer to “EE_WriteEnable()” for an example. 
 

 EE_MultiRead () 
Function: Reads data from the EEPROM 
Syntax: int EE_MultiRead(int StartBlock,unsigned 

StartAddr,int no,char *databuf); 
Header: #include ”7188xa.h” 
Description: Reads multi-byte data from the EEPROM. 

StartBlock: 0 to 7 (a total of 8 blocks). 
StartAddr: 0 to 255 (each block can contain 256 bytes). 
no: 1 to 2048 
databuf: The address to store data 

Return Value: On success, returns NoError. 
On error, returns -1. It is say EEPROM is busy, Block is 
invalid or Addr is invalid. 

Example: Please refer to “EE_WriteEnable()” for an example. 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 112 

Type 4: NVRAM and RTC 
Function Description 

ReadNVRAM Reads data from the NVRAM. 
WriteNVRAM Writes data to the NVRAM. 
GetTime Gets the system time from the RTC. 
SetTime Sets the system time for the RTC 
GetDate Gets the system date from the RTC 
SetDate Sets the system date for the RTC 
GetWeekDay Gets the day of the week from the RTC. 

…More… 

There are many other functions related to the NVRAM and 
the RTC. Please refer to the 7188xa.h header file and the 
user manual on the enclosed CD, which can be found at 
CD:\Napdos\minios7\document\lib_manual_for_7188xabc\index.htm 
for more detailed information. 

 
 ReadNVRAM() 

Function: Reads data from the NVRAM. 
Syntax: int ReadNVRAM(int addr); 
Header: #include ”7188xa.h” 
Description: Reads one byte of data from the NVRAM. 

addr: 0 to 30, a total of 31 bytes. 
Return Value: On success, returns the data (0-255) stored at the 

specified address. 
On error, returns the AddrError (-9). 

Example: 
#include <7188xa.h> 
void main() 
{ 

int data=55, data2; 
InitLib(); 
WriteNVRAM(0,data); 
data2=ReadNVRAM(0);  /* now data2=data=55 */ 
Print("data=%d, data2=%d",data,data2); 

} 
 
 WriteNVRAM() 

Function: Writes data to the NVRAM. 
Syntax: int WriteNVRAM(int addr, int data); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 113 

Header: #include ”7188xa.h” 
Description: Writes one byte of data to the NVRAM. 

addr: 0-30. 
data: One byte of data (0-255). 
If the data>255, only the low byte will be written to the 
NVRAM. 

Return Value: On success, returns NoError. 
On error, returns the AddrError (-9). 

Example: Please refer to “ReadNVRAM()” for more detailed 
information. 

 
 GetTime() 

Function: Retrieves the system time from the RTC. 
Syntax: void GetTime(int *hour, int *minute, int *sec); 
Header: #include ”7188xa.h” 
Description: hour: The address used to save the hour (0-23) data. 

minute: The address used to save the minute (0-59) 
data. 

sec: The address used to save the second (0-59) data. 
Example: 
#include <7188xa.h> 
void main() 
{ 

int year, month, day, hour, min, sec, wday; 
InitLib(); 
SetDate(2006,1,12);  /*sets the system date for the RTC*/ 
SetTime(15,35,50);  /*sets the system time for the RTC*/ 
SetWeekDay(4);  /*sets the system day of the week for the RTC*/ 
GetDate(&year,&month,&day);  /*reads the system date from the RTC*/ 
GetTime(&hour,&min,&sec);  /*reads the system time from the RTC*/ 
wday=GetWeekDay(); 
Print("Date=%02d/%02d/%04d(%d) Time=%02d:%02d:%02d\n\r", 
month,day,year,wday,hour,min,sec); 

} 
 

 SetTime() 
Function: Sets the system time to the RTC 
Syntax: int SetTime(int hour,int minute,int sec); 
Header: #include ”7188xa.h” 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 114 

Description: hour: 0-23. 
minute: 0-59. 
sec: 0-59. 

Return Value: On success, returns NoError. 
On error, returns the TimeError (-19). 

Example: Please refer to “GetTime()” for more detailed information. 
 

 GetDate() 
Function: Reads the system date from the RTC 
Syntax: void GetDate(int *year,int *month,int *day); 
Header: #include ”7188xa.h” 
Description: year: 2000-2080 

month: 1-12 
day: 1-31 

Example: Please refer to “GetTime()” for more detailed information. 
 

 SetDate() 
Function: Sets the system date to the RTC 
Syntax: int SetDate(int year,int month,int day); 
Header: #include ”7188xa.h” 
Description: year: 2000-2080 

month: 1-12 
day: 1-31 

Return Value: On success, returns NoError. 
On error, returns DateError (-18). 

Example: Please refer to “GetTime()” for more detailed information. 
 

 GetWeekDay() 
Function: Reads the weekday from the RTC. 
Syntax: int GetWeekDay(void); 
Header: #include ”7188xa.h” 
Description: Reads the weekday from the RTC. 
Return Value: 0=>Sunday 

1-6=>Monday to Saturday. 
Example: Please refer to “GetTime()” for more detailed information. 
 

Note: GetWeekDay() does not check whether the weekday is correct 
or not, only reads the value from the RTC. When using the MiniOS7 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 115 

“date” command to set the date, the MiniOS7 will calculate the correct 
weekday and set the RTC. If SetDate() is called, it will also calculate 
the correct weekday and set the RTC. However, if SetWeekDay() is 
called, the function must calculate the correct weekday itself. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 116 

Type 5: Flash Memory 
Function Description 

FlashReadId Retrieces the information about Flash. 
FlashErase Erases a single sector of the Flash memory. 
FlashWrite Writes one byte of data to the Flash memory. 
FlashRead Reads one byte of data from the Flash memory. 

…More… 

There are many other functions related to the Flash 
memory. Please refer to the 7188xa.h header file and the 
user manual on the enclosed CD, which can be found at 
CD:\Napdos\minios7\document\lib_manual_for_7188xabc\index.htm 
for more detailed information. 

 
The Flash memory used in I-7188XA(D) series modules has a capacity 
of 512K bytes. The MiniOS7 will use the last 64K bytes, and the 
remaining space can be used to store custom programs or data. 
 
Application developers can use these functions to write data to the 
Flash memory. When writing data to the Flash memory, data only be 
written from “1” to “0”, and cannot be written from “0” to “1”. So, before 
writing data to the Flash memory, must be erased first. The erase 
process will cause all data to revert to 0xFF, that is all data bits will be 
“1”. Only then can data be written. The FlashErase() function is used to 
erase one sector (64K bytes) each time. 
 
 FlashReadId() 

Function: Retrieves the information about Flash. 
Syntax: int FlashReadId(void); 
Header: #include ”7188xa.h” 
Description: Reads the Flash memory device code (high byte) and 

manufacturer code (low byte). 
Return Value: 0xA4C2 (MXIC 29f040), 0xA401 (AMD 29f040) 
Example: See CD:\Napdos\7188XABC\7188XA\Demo\BC_TC\ 

Memory\ 
 

 FlashErase() 
Function: Erases a single sector of the Flash memory. 
Syntax: int FlashErase(unsigned seg); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 117 

Header: #include ”7188xa.h” 
Description: Erases a single sector (64K bytes) of the Flash memory. 

The value of all data on that sector will revert to 0xFF. 
seg: 0x8000, 0x9000, 0xA000, 0xB000, 0xC000, 

0xD000 or 0xE000. 
Return Value: On success, returns NoError (0). 

On error, returns TimeOut (-5). 
Example:  Please refer to “\Demo\BC_TC\Memory\Flash\ FLASH.C” 

for more detailed information. 
 

Note: Segment 0xF000 is used to store the MiniOS7, if attempting to 
erase segment 0xF000, FlashErase() will do nothing. 
 

 FlashWrite() 
Function: Writes one byte of data to Flash memory. 
Syntax: int FlashWrite(unsigned int seg, unsigned int offset, 

char data); 
Header: #include ”7188xa.h” 
Description: seg: 0x8000, 0x9000, 0xA000, 0xB000, 0xC000, 

0xD000 or 0xE000. 
offset: 0 to 65535 (0xffff). 
data: 0 to 255 (8-bit data). 

Return Value: On success, returns NoError(0). 
On error, returns TimeOut(-5) or SegmentError(-12). 

Example: 
#include <7188xa.h> 
void main() 
{ 

int data=0xAA55, data2; 
char *dataptr; 
InitLib(); 
dataptr=(char *)&data; 
FlashWrite(0xd000,0x1234, *dataptr++); /*writes data to the Flash 

memory*/ 
FlashWrite(0xd000,0x1235, *dataptr); 
dataptr=(char *)&data2;  /*reads data from the Flash memory*/ 
*dataptr=FlashRead(0xd000, 0x1234); 
*(dataptr+1)=FlashRead(0xd000, 0x1235); 

} 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 118 

Note: When writing data to the Flash memory, the data bit only can 
be changed from 1 to 0 and cannot be written from “0” to “1”. 
FlashWrite() does not check the status, and just writes the data. If an 
attempt is made to change the data from 0 to 1, a TimeoutError will 
occur. After calling FlashErase() data can be written again. 
 

 FlashRead() 
Function: Reads one byte of data from the Flash memory. 
Syntax: int FlashRead(unsigned int seg, unsigned int offset); 
Header: #include ”7188xa.h” 
Description: seg: 0-65535(0xffff). 

offset: 0 to 65535(0xffff). 
Return Value: FlashRead() only returns the value of the address. 

seg:offset. The address can be from the SRAM, the 
Flash memory or another address (generally returns 
0xff). 

Example: Please refer to “FlashWrite()” function for more detailed 
information. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 119 

Type 6: Timer and Watchdog Timer 
Function Description 

TimerOpen Opens the timer function for use. 
TimerClose Stops the timer function. 
TimerResetValue Resets the timer to 0. 
TimerReadValue Reads the main time ticks. 

DelayMs 
Inserts a delay for a specific time interval. 
The time unit is ms, and uses system time 
ticks. 

Delay 
Inserts a delay for a specific time interval. 
The time unit is ms, and uses the Timer 1 
feature of the CPU. 

Delay_1 
Inserts a delay for a specific time interval. 
The time unit is 0.1 ms, and uses the 
Timer 1 feature of the CPU. 

Delay_2 
Inserts a delay for a specific time interval. 
The time unit is 0.01 ms, and uses the 
Timer 1 feature of the CPU. 

StopWatchStart Starts using a StopWatch channel. 
StopWatchReset Resets the StopWatch value to 0. 
StopWatchStop Disables the StopWatch channel. 
StopWatchPause Pauses the StopWatch. 
StopWatchContinue Restarts the StopWatch. 
StopWatchReadValue Reads the current StopWatch value. 
CountDownTimerStart Starts using CountDownTimer. 
CountDownTimerReadValue Reads the current CountDownTimer value 

InstallUserTimer Installs a user timer function, which will be 
called at intervals of 1 ms. 

InstallUserTimer1C 
Installs a user timer function on interrupt 
0x1c. System timer will call int 0x1c at 
intervals of 55 ms. 

EnableWDT Enables the Watchdog timer 
DisableWDT Disables the Watchdog timer 
RefreshWDT Refreshes the Watchdog timer 

…More… 
There are many other custom timer and 
Watchdog Timer functions available. 
Please refer to the 7188xa.h header file 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 120 

and the user manual on the enclosed CD, 
which can be found at 
CD:\Napdos\minios7\document\ lib_manual_for 
_7188xabc\index.htm for more detailed 
information. 

 
 TimerOpen() 

Function: Opens the timer function for use. 
Syntax: int TimerOpen(void); 
Header: #include ”7188xa.h” 
Description: Before any of the timer functions can be used the 

TimerOpen() function must be called. 
Return Value: On success, returns NoError. If the Timer is already 

open, returns 1. 
Example: 
#include <7188xa.h> 
void main() 
{ 

unsigned long time; 
int quit=0; 
InitLib(); 
Print("\n\rPress any key to start the timer"); 
Print("\n\rthen Press '0' to Reset the timer, ’1’~’4’ to insert a delay, 'q' to 

quit\n\r"); 
Getch(); 
TimerOpen();  /*open the timer function*/ 
while(!quit){  /*sets the key function*/ 

if(Kbhit()){ 
switch(Getch()){ 

case '0': 
TimerResetValue();  /*reset the timer*/ 
break; 

case '1': 
DelayMs(1000);  /*delay unit is ms, uses system timeticks. */ 
break; 

case '2': 
Delay(1000);  /*delay unit is ms, uses the Timer 1 feature of the 

CPU. */ 
break; 

case '3': 
Delay_1(1000);  /*delay unit is 0.1 ms, uses the Timer 1 feature 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 121 

of the CPU.*/ 
break; 

case '4': 
Delay_2(1000);  /*delay unit is 0.01 ms, uses the Timer 1 

feature of the CPU .*/ 
break; 

case 'q': 
quit=1; 
break; 

} 
} 
time=TimerReadValue();  /*reads the timer*/ 
Print("\r\nTime=%8.3f sec", 0.001*time); 

} 
TimerClose();  /*closes the timer function*/ 

} 
 
 TimerClose() 

Function: Stops the timer function. 
Syntax: int TimerClose(void); 
Header: #include ”7188xa.h” 
Description: If the program has called the OpenTimer() function, it 

must call TimerClose() before exiting. 
Return Value: Always returns NoError. 
Example: Please refer to “TimerOpen()” function for more detailed 

information. 
 

 TimerResetValue() 
Function: Resets the timer to 0. 
Syntax: void TimerResetValue(void); 
Header: #include ”7188xa.h” 
Description: Resets the main time ticks to 0. 
Example: Please refer to “TimerOpen()” function for more detailed 

information. 
 

 TimerReadValue() 
Function: Reads the main time ticks. 
Syntax: unsigned long TimerReadValue(void); 
Header: #include ”7188xa.h” 
Description: Reads the main time ticks. The time unit is ms. When 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 122 

TimerOpen or TimerReset are called, the time ticks will 
be reverted to 0. 

Example: Please refer to “TimerOpen()” function for more detailed 
information. 

 
 DelayMs() 

Function: Inserts a delay for a specific time interval. The time unit is 
ms and uses system time ticks. 

Syntax: void DelayMs(unsigned t); 
Header: #include ”7188xa.h” 
Description: Delay time unit is ms. 

t: the delay time. 
Example: Please refer to “TimerOpen()” function for more detailed 

information. 
 

 Delay() 
Function: Inserts a delay for a specific time interval. The time unit is 

ms and uses Timer 1 feature of the CPU. 
Syntax: void Delay(unsigned ms); 
Header: #include ”7188xa.h” 
Description: Inserts a delay for a specific time interval. The time unit 

is ms and uses the Timer 1 feature of the CPU. 
ms: the delay time. 

Example: Please refer to “TimerOpen()” function for more detailed 
information. 

 
 Delay_1() 

Function: Inserts a delay for a specific time interval. The time unit is 
0.1 ms and uses the Timer 1 feature of the CPU. 

Syntax: void Delay_1(unsigned ms); 
Header: #include ”7188xa.h” 
Description: Inserts a delay for a specific time interval. The time unit 

is 0.01 ms and uses the Timer 1 feature of the CPU. 
ms: the delay time. 

Example: Please refer to “TimerOpen()” function for more detailed 
information. 

 
 Delay_2() 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 123 

Function: Inserts a delay for a specific time interval. The time unit is 
0.01 ms and uses the Timer 1 of the CPU. 

Syntax: void Delay_2(unsigned ms); 
Header: #include ”7188xa.h” 
Description: Inserts a delay for a specific time interval. The time unit 

is 0.01 ms and uses the Timer 1 feature of the CPU. 
ms: the delay time. 

Example: Please refer to “TimerOpen()” function for more detailed 
information. 

 
 StopWatchStart() 

Function: Starts using a StopWatch channel, and resets the 
StopWatch value to 0. 

Syntax: int StopWatchStart(int channel); 
Header: #include ”7188xa.h” 
Description: The system timer ISR will increment the StopWatch 

value by 1 in 1 ms intervals. 
channel: 0-7, a total of 8 channels. 

Return Value: On success, returns NoError. 
If the channel is out of range, returns ChannelError 
(-15). 

Example: 
#include <7188xa.h> 
void main(void)  
{ 

unsigned long value; 
int quit=0; InitLib(); 
Print("\n\rTest the StopWatch ... Press 'q' to quit\n\r "); 
TimerOpen(); 
StopWatchStart(0);  /*start using the StopWatchStart function*/ 
while(!quit){ 

if(Kbhit()){ switch(Getch()){ case 'q': quit=1; break; } } 
StopWatchReadValue(0,&value); 
Print("SWatch=%d \r",value); 
if(value==2000){ 

StopWatchPause(0); 
DelayMs(2000); 
StopWatchContinue(0); } 
if(value==4000){ 

StopWatchStop(0); 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 124 

DelayMs(2000); 
StopWatchReset(0); 
StopWatchStart(0); 

} 
} 
TimerClose(); 

} 
 

 StopWatchReset() 
Function: Resets the StopWatch value to 0. 
Syntax: int StopWatchReset(int channel); 
Header: #include ”7188xa.h” 
Description: channel: 0-7, a total of 8 channels. 
Return Value: On success, returns NoError. 

If the channel is out of range, returns ChannelError 
(-15). 

Example: Please refer to “StopWatchStart()” function for more 
detailed information. 

 
 StopWatchStop() 

Function: Disables the StopWatch channel. 
Syntax: int StopWatchStop(int channel); 
Header: #include ”7188xa.h” 
Description: The system timer ISR will stop to increment the 

StopWatch value. 
channel: 0-7, a total of 8 channels. 

Return Value: On success, returns NoError. 
If the channel is out of range, returns ChannelError 
(-15). 

Example: Please refer to “StopWatchStart ()” function for more 
detailed information. 

 
 StopWatchPause() 

Function: Pauses the StopWatch. 
Syntax: int StopWatchPause(int channel); 
Header: #include ”7188xa.h” 
Description: After calling StopWatchPause(), StopWatchContinue() 

must be called to restart the time counter. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 125 

channel:0-7, a total of 8 channels. 
Return Value: On success, returns NoError. 

If the channel is out of range, returns ChannelError 
(-15). 

Example: Please refer to “StopWatchStart ()” function for more 
detailed information. 

 
 StopWatchContinue() 

Function: Restarts the StopWatch. 
Syntax: int StopWatchContinue(int channel); 
Header: #include ”7188xa.h” 
Description: channel:0-7, a total of 8 channels. 
Return Value: On success, returns NoError. 

If the channel is out of range, returns ChannelError 
(-15). 

Example: Please refer to “StopWatchStart ()” for more detailed 
information. 

 
 StopWatchReadValue() 

Function: Reads the current StopWatch value. 
Syntax: int StopWatchReadValue(int channel,unsigned long 

*value); 
Header: #include ”7188xa.h” 
Description: The value represents the time that has elapsed since 

either a StopWatchStart() or StopWatchReset() was last 
called. 
channel: 0-7, a total of 8 channels. 

Return Value: On success, returns NoError(). 
If the channel is out of range, returns ChannelError 
(-15). 

Example: Please refer to “StopWatchStart ()” for detailed more 
information. 

 
 CountDownTimerStart() 

Function: Starts using the CountDownTimer. 
Syntax: int CountDownTimerStart(int channel,unsigned long 

count); 
Header: #include ”7188xa.h” 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 126 

Description: channel: 0-7, a total of 8 channels. 
count: the amount of time to be counted. 

Return Value: On success, returns NoError(). 
If the channel is out of range, returns ChannelError 
(-15). 

 
Example: 
#include <7188xa.h> 
void main(void) 
{ 

unsigned long value; 
int quit=0; 
InitLib(); 
Print("\n\rTest the CountDownTimer..."); 
Print("\n\rPress 'q' to quit\n\r"); 
TimerOpen(); 
CountDownTimerStart(0,1000);  /*use the CountDownTimer*/ 
while(!quit){ 

if(Kbhit()&&(Getch()=='q')) quit=1; 
CountDownTimerReadValue(0,&value);  /*reads the 

CountDownTimer*/ 
Print("Test CountDown=%d\r",value); 
if(value==0) 

CountDownTimerStart(0,1000);  /*restarts the CountDownTimer*/ 
} 
TimerClose(); 

} 
 

 CountDownTimerReadValue() 
Function: Reads the current value of the CountDownTimer(count). 
Syntax: int CountDownTimerReadValue(int channel,unsigned 

long *value); 
Header: #include ”7188xa.h” 
Description: If the return value is 0, it means that the time has 

expired. 
channel: 0-7, a total of 8 channels. 
value: a pointer to the location where the value is to be 

stored. 
Return Value: On success, returns NoError(). 

If the channel is out of range, returns ChannelError 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 127 

(-15). 
Example: Please refer to “CountDownTimerStart ()” function for 

more detailed information. 
 

 InstallUserTimer() 
Function: Installs a custom timer function, which will be called at 

intervals of 1ms. 
Syntax: void InstallUserTimer(void (*fun)(void)); 
Header: #include ”7188xa.h” 
Description: fun: A pointer to the custom function. The function 

cannot use an input argument and cannot return a value. 
Example: 
#include <7188xa.h> 
int Data[3]={0,0,0}; 
void MyTimerFun(void)  /*custom timer function*/ 
{ 

static int count[3]={0,0,0}; 
int i; 
for(i=0;i<3;i++){ 

Print("count[%d]=%d\r",i,count[i]); 
count[i]++; 

} 
if(count[0]>=200){  /*LCD lamp1 blinks each 200 units*/ 

count[0]=0; 
if (Data[0]==0) Data[0]=1; 
else Data[0]=0; 
lamp(1,1,Data[0]); 

} 
if(count[1]>=500){  /*LCD lamp2 blinks each 500 units*/ 

count[1]=0; 
if (Data[1]==0) Data[1]=1; 
else Data[1]=0; 
lamp(2,1,Data[1]); 

} 
if(count[2]>=1000){  /*LCD lamp3 blinks each 1000 units*/ 

count[2]=0; 
if (Data[2]==0) Data[2]=1; 
else Data[2]=0; 
lamp(3,1,Data[2]); 

} 
} 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 128 

void main(void) 
{ 

int quit=0; 
Print("\n\rTest the LCD lamp blink using user timer "); 
Print("\n\rPress 'q' to quit\n\r"); 
InitLib(); InitLCD();  /*initial Lib & LCD*/ 
ClrScrn();  /*clear the LCD screen*/ 
TimerOpen();  /*open timer function*/ 
InstallUserTimer(MyTimerFun); /*install and call user timer */ 
while(!quit){ 

if(Kbhit() && Getch()=='q') quit=1; 
} 
TimerClose(); 

} 
 

 InstallUserTimer1C() 
Function: Installs a custom timer function on interrupt 0x1c. The 

system timer will call int 0x1c at intervals of 55 ms. 
Syntax: void InstallUserTimer1C(void (*fun)(void)); 
Header: #include ”7188xa.h” 
Description: fun: A pointer to the custom function. The function 

cannot use an input argument and cannot return a value. 
Example: Please refer to “InstallUserTimer()” function for a similar 

example. 
 

 EnableWDT() 
Function: Enables the WatchDog timer. 
Syntax: void EnableWDT(void); 
Header: #include ”7188xa.h” 
Description: The WatchDog Timer (WDT) is always enabled and will 

be continually refreshed by the system Timer ISR. When 
a custom program calls EnableWDT(), the system timer 
ISR will stop refreshing the WDT, which must then be 
performed by calling RefreshWDT() from within the 
program, otherwise, the system will be reset by the WDT. 
The WDT timeout period is 0.8 seconds for MiniOS7 2.0. 

Example: 
#include"7188xa.h" 
void main(void) 
{ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 129 

int quit=0,k; 
InitLib(); 
if(IsResetByWatchDogTimer())  /*test whether the system has been 

reset by the WDT*/ 
Print("reset by WatchDog timer\n\r"); 

EnableWDT();  /*after callng EnableWDT, Refresh WDT must be called 
within 0.8s*/ 

while(!quit){ 
if(Kbhit()) { 

k=Getch(); 
if(k=='q') { 

Print("quit the program\r\n"); 
quit=1;  /*quit the program*/ 

} 
else { 

Print("more than 0.8s has elapsed reset the system\r\n"); 
Delay(1000);  /*There has been a delay for more than 0.8s. Reset 

the system*/ 
} 

} 
RefreshWDT();  /*Refresh WDT must be called within 0.8s*/ 
Print("call Refresh WDT\n\r"); 

} 
DisableWDT(); /*Disable the WDT. The system will refresh the WDT*/ 
Print("Call DisableWDT\n\r"); 

} 
 

 DisableWDT() 
Function: Disables the WatchDog timer. 
Syntax: void DisableWDT(void); 
Header: #include ”7188xa.h” 
Description: See the description for EnableSDT(). 
Example: Please refer to “EnableWDT()” function for more detailed 

information. 
 

 RefreshWDT() 
Function: Refreshes the WatchDog timer. 
Syntax: void RefreshWDT(void); 
Header: #include ”7188xa.h” 
Description: See the description for EnableSDT(). 
Example: Please refer to “EnableWDT()” function for more detailed 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 130 

information. 
 

 IsResetByWatchDogTime() 
Function: Checks if system has been reset by the WatchDog Timer. 
Syntax: int IsResetByWatchDogTime(void); 
Header: #include ”7188xa.h” 
Description: Returns 0 when true. 
Example: Please refer to “EnableWDT()” function for more detailed 

information. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 131 

Type 7: Files 
Function Description 

GetFileNo Retrieves total number of files stored in the Flash 
memory. 

GetFileName Uses the file index to retrieve the file name. 
GetFilePositionByNo Uses the file number to retrieve the file position. 

GetFileInfoByNo Uses the file number to retrieve the file 
information. 

GetFileInfoByName Uses the file name to retrieve the file information. 

…More… 

There are many other custom file functions 
available. Please refer to the 7188xa.h header file 
and the user manual on the enclosed CD, which 
can be found at CD:\Napdos\minios7\document\lib_ 
manual_for_7188xabc\index.htm for more 
detailed for more detailed information. 

 
Note: The file system for MiniOS7 supports custom programs for 
reading files, but does not support custom programs for writing files. 
 
 GetFileNo() 

Function: Gets the total number of files stored in the Flash memory. 
Syntax: int GetFileNo(void); 
Header: #include ”7188xa.h” 
Description: Returns the number of files. 
Example: Please refer to “GetFilePositionByNo()” for more detailed 

information. 
 

 GetFileName() 
Function: Uses the file index to get the file name. 
Syntax: int GetFileName(int no,char *fname); 
Header: #include ”7188xa.h” 
Description: no: The file index (The first file is index 0). 

fname: Buffer to store file name. 
Return Value: On success, returns NoError, and stores the filename 

to the fname. 
On error, returns -1, and does not save any data to the 
fname. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 132 

Example: Please refer to “GetFilePositionByNo()” for more detailed 
information. 

 
 GetFilePositionByNo() 

Function: Uses the file number to read the file position. 
Syntax: char far *GetFilePositionByNo(int no); 
Header: #include ”7188xa.h” 
Description: The address can be used to get the file data. 

no: The file index (The first file is index 0). 
Return Value: On success, returns the starting address of the file. 

On error, returns NULL. 
 

Note: If the file size is > 64K-16, a huge pointer (char huge *) data 
type must be used to retrieve the file data for the offset. 
 
Example: 
#include"7188xa.h" 
static FILE_DATA far *fdata;  /*file_data structure, please see the file.c 

for details*/ 
char far *fp_no; 
void main() 
{ 

int fileno,i; 
char fname[13]; 
InitLib();  /*Initialize the Library*/ 
fileno=GetFileNo();  /*get file number*/ 
Print("Total file number=%d\n\r",fileno); 
fname[12]=0; 
for(i=0;i<fileno;i++){ 

fdata=GetFileInfoByNo(i);  /*get file information using the file 
number*/ 

if(fdata) { 
GetFileName(i,fname);  /*get file name*/ 
Print("[%02d]:%-12s start at %Fp "  

"%02d/%02d/%04d %02d:%02d:%02d size=%lu\n\r", i,fname, 
fdata->addr,fdata->month,fdata->day,(fdata->year)+1980, 
fdata->hour,fdata->minute,fdata->sec*2,fdata->size); 

} 
} 
for(i=0;i<fileno;i++){ 

fp_no=(char far *)GetFilePositionByNo(i);  /*get file position*/ 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 133 

if(fp_no){ 
GetFileName(i,fname); 
Print("file %d [%-12s] position: [ %Fp ]\r\n",i,fname,fp_no); 

} 
} 

} 
 

 GetFileInfoByNo() 
Function: Uses the file number index to retrieve file information. 
Syntax: FILE_DATA far *GetFileInfoByNo(int no); 
Header: #include ”7188xa.h” 
Description: no: The file index (The first file is index 0). 
Return Value: On success, returns the starting address of the file 

information. 
On error, returns NULL. 

Example:  Please refer to “GetFilePositionByNo()” for more detailed 
information. 

 
 GetFileInfoByName() 

Function: Uses the file name to retrieve the file information. 
Syntax: char far *GetFileInfoByName(char *fname); 
Header: #include ”7188xa.h” 
Description: fname: The file name. 
Return Value: On success, returns the starting address of the file 

information. 
On error, returns NULL. 

Example: Please refer to “GetFilePositionByNo()” for more detailed 
information. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 134 

Type 8: Connecting to I-7000/I-87K series module 
Function Description 

SendCmdTo7000 Sends a command to an I-7000/I-87K series 
module. 

ReceiveResponseFrom7000_ms Receives a response from an I-7000/I-87K 
series module 

ascii_to_hex Converts the ASCII code to a hexadecimal 
value. 

hex_to_ascii Converts a hexadecimal value to ASCII code. 

…More… 

There are many other functions related to 
connecting to I-7000/I-87K series module. 
Please refer to the 7188xa.h header file and 
the user manual on the enclosed CD, which 
can be found at CD:\Napdos\minios7\document 
\lib_manual_for_7188xabc\index.htm for more 
detailed information. 

 
 SendCmdTo7000() 

Function: Sends a command to an I-7000 series module. 
Syntax: int SendCmdTo7000(int iPort, unsigned char *cCmd, 

int iChksum); 
Header: #include ”7188xa.h” 
Description: If the checksum is enabled, the function will add 2 bytes 

checksum to the end of the command. 
iPort: 0/1/2/3/4 for COM0/1/2/3/4. 
cCmd: The command to be sent (DO NOT add “\r” at the 

end of the cCmd as SendCmdTo7000() will add a 
checksum (if needed) and “\r” after the cCmd). 

iChecksum: 1 for checksum enabled, 0 for checksum 
disabled. 

Return Value: On success, returns NoError. 
On error, returns an Error code. Refer to the user 
manuals for I-7000 series modules for more details. 

Example: 
#include <7188xa.h> 
void main() 
{ 

int port=2,quit=0,x; 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 135 

char k; 
InitLib(); 
InstallCom(port,115200L,8,0,1);  /*install a COM Port for the I-7065D*/ 
ClearCom(port); 
SendCmdTo7000(port, "@0100", 0);  /*send a command to DO to off*/ 
if(ReceiveResponseFrom7000_ms(port,"@0100",20,0)) 

Print("I-7065D is not available\r\n"); 
while(!quit){  /*control Do*/ 

Print("\n\r Enter 1~5 to set [Do] on...'9' to quit\n\r"); 
k=Getch(); 
x=ascii_to_hex(k);  /*convert ASCII code to hex*/ 
ClearCom(port); 
switch(x){  /*send a command to set the I-7065D Do1~5 light to on*/ 

case 1:  /*for command details, refer to the “I-7000 DIO manual”*/ 
SendCmdTo7000(port, "@0101", 0);Print("[%x]=ON",x);break; 

case 2: 
SendCmdTo7000(port, "@0102", 0); Print("[%x]=ON",x);break; 

case 3: 
SendCmdTo7000(port, "@0104", 0); Print("[%x]=ON",x);break; 

case 4: 
SendCmdTo7000(port, "@0108", 0); Print("[%x]=ON",x);break; 

case 5: 
SendCmdTo7000(port, "@0110", 0); Print("[%x]=ON",x);break; 

case 9: 
quit=1; Print("*quit*");break; 

}  /*end of switch*/ 
}  /*end of while loop*/ 

} 
 
 ReceiveResponseFrom7000_ms() 

Function: Receives a response from the I-7000 module. 
Syntax: int ReceiveResponseFrom7000_ms(int iPort, 

unsigned char *cCmd, long lTimeout, int iChksum); 
Header: #include ”7188xa.h” 
Description: After calling the SendCmdTo7000() function, the  

ReceiveResponseFrom7000_ms() function must be 
called except for commands that do not require a 
response. 
iPort: 1 for COM1, 2 for COM2, etc. 
cCmd: The response received from the I-7000 module. If 

checksum is enabled, the function will check and 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 136 

remove the checksum. The CR is also removed. 
lTimeout: Sets the timeout. The unit is ms. 
iChecksum: 1 for checksum enabled, 0 for checksum 

disabled. 
Return Value: On success, returns NoError. 

On error, returns an Error code. Refer to the use 
manuals for I-7000 series modules for more details. 

Example: Please refer to SendCmdTo7000() for more detailed 
information. 

 
 ascii_to_hex() 

Function: Converts ASCII code to a hexadecimal value. 
Syntax: int ascii_to_hex(char ascii); 
Header: #include ”7188xa.h” 
Description: Returns an integer representing the Hex value. 

ascii: The ASCII code char 
Example: Please refer to SendCmdTo7000() for more detailed 

information. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 137 

Appendix E: Compiling and linking 

Using the TC Compiler 
There are two procedures for using the TC compiler, TC 2.01, which are 
described as follows: 
Method 1: Using a command line (For more information, please refer to 
CD:\8000\NAPDOS\7188XABC\7188XA\Demo\BC_TC\Hello_C\gotc.bat) 
tcc -Ic:\tc\include -Lc:\tc\lib hello1.c ..\lib\7188xas.lib 
 

Method 2: Using the TC Integrated Environment 
Step 1: Execute TC.EXE to run the TC 2.01 Integrated Environment. 
Step 2: Edit the Project file (Add the necessary library and files to the 

project). 

 
 

Step 3: Save the project as a Project file by selecting “save” from the 
File menu and entering a name, such as LED.prj. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 138 

Step 4: Load the Project by selecting the project name from the Project 
menu. 

 
 
Step 5: On the compiler options menu, change the Memory model 

(Small for 7188xas.lib, large for 7188xal.lib) and set the Code 
Generation to 80186/80286 as shown in the diagram below. 

 
 

 
 
Step 6: Select “Build all” from the compile menu to build the project. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 139 

 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 140 

Using the BC++ Compiler 
The procedures for using the BC++ compiler is as follows: 
Step 1: Execute the Borland C++ 3.1. 

 
 
Step 2: Create a new project file (*.prj). 

 
 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 141 

Step 3: Add all the necessary files to the project. 

 
 

Step 3.1: Select the source file. 

 
 

Step 3.2: Select the function library and then click the Done button. 

 
 
 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 142 

Step 4: Set the Code generation options. 

 
 

Step 4.1: Change the Memory model (Small for 7188xas.lib, large for 
7188xal.lib). 

 
 
Step 5: Set the Advanced code generation options. 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 143 

 
 

Step 5.1: Set the Floating Point to Emulation and the Instruction Set 
to 80186. 

 
 

Step 6: Set the Entry/Exit Code Generation option. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 144 

Step 6.1: Set the DOS standard. 

 
 
Step 7: Set the Debugger Options. 

 
 

7.1 Set Source Debugging to None. 

 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 145 

Step 8: Make the project 

 
 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 146 

Using MSC Compiler 
The working steps to use MSC 6.00 Compiler are given as 
following: 
Step 1: In the source file folder, create a batch file called Gomsc.bat 

using the text editor. 

 
 
NOTE: /C: don't strip comments 

/Gs: no stack checking 
/Fpa: calls with altmath 
/Fm: [map file] 
/G1: 186 instructions 
/AL: large model 

 
Step 2: Run the Gomsc.bat file. 

 

The source code 

The path for the function library 

The object file name 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 147 

Step 3: A new executable file will be created if it is successfully 
compiled. 

 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 148 

Using MSVC++ Compiler 
The working steps to use MSVC 1.50 compiler are given as 
following: 
Step 1: Run MSVC.exe 

 
 
Step 2: Create a new project (*.mak) by entering the name of the project 

in the Project Name field and then select MS-DOS application 
(EXE) as the Project type. 

 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 149 

Step 3: Add the user's program and the necessary library files to the 
project. 

 
 
Step 4: Set the Code Generation on the Compiler. 

 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 150 

Step 5: Change the Memory model (Small for 7188xas.lib, large for 
7188xal.lib). 

 
 
Step 6: Remove the xcr, afxcr library from the Input Category. 

 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 151 

 
 
Step 7: Remove the OLOGO option from the miscellancous Category. 

 
 
 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 152 

Step 8: Rebuild the project. 

 
 

 
 



 

I-7188XA Series User’s Manual( Ver.1.1, Feb/2012, 7MH-019-10 ) --- 153 

Appendix F: Glossary 
1. The 64-bit hardware unique serial number: 

The I-7188XA(D) is equipped with a 64-bit hardware unique onboard 
serial number. This number is unique and cannot be shared by any 
two I-7188XA(D) controllers. The application software can use this 
number to check the valuably of the controller and th proe the use of 
illegal copies. It is the most low cost protection mechanism the 
I-7188XA(D) currently has. 

 
2. AsicKey: 

The I/O expansion bus supports AsicKey. The AsicKey equips a 
complex machine for validation checking. Included in this are 128 
bytes of private data for the same purpose. It provides very strong 
protection against illegal copies. Every legal user has a unique 
AsicKey and unique software library, the user can self check this key, 
or the software library will check the key automatically. In this main, it 
is nearly impossible to remove the AsicKey protection. 

 
 


	1. Introduction
	1.1 FEATURES
	1.2 SPECIFICATIONS
	1.3 Software and Document information
	1.4 Hardware Information
	1.4.1  Schematics and Dimensions of the I-7188XA(D)
	1.4.2  Pin Assignment
	1.4.3  Mounting the I-7188XA(D)
	1.4.4  Block Diagram
	1.4.5  Wiring Diagrams for Application
	Program download
	Using a 3-wire RS-232 Port
	Using a 5-wire RS-232 Port
	Using a 9-wire RS-232 Port
	Using the RS-485 Port

	1.4.6  DI/DO wire connection
	1.4.7  Mounting the I/O Expansion Bus


	2. Quick Start
	2.1 Software Installation
	2.2 Connect the Download Cable to the Host PC
	2.3 Downloading Programs to the I-7188XA(D)
	2.4 MiniOS7 Upgrade

	3. Writing Your First Program
	3.1 Libraries
	3.2 Compiler and Linker
	3.3 The Detailed Steps for Programming
	3.3.1  Download Turbo C++ version 1.01
	3.3.2  Install Turbo C++ version 1.01
	3.3.3  Set the environment variables of the system
	3.3.4  Build and Execute the Program


	4.  Operating Principles
	4.1 System Mapping
	4.2 Debugging custom Programs using COM4
	4.3 Using the Download Port as a COM Port
	4.4 Functions and Demo Programs List
	4.5 COM Port Comparison
	4.6 Using the COM Ports
	4.6.1  To print from the COM port
	4.6.2  To Use COM1/COM2 for an RS-485 Application
	4.6.3  To Send a Command to an I-7000 module

	4.7 Using the Red LED and 7-SEG LED Display
	4.8 Accessing the I-7188XA(D) Memory
	4.8.1  Using Flash Memory
	4.8.2  Using RTC and NVSRAM
	4.8.3  Using EEPROM

	4.9 Using the Watchdog Timer
	4.10  Using the Timer Function
	4.11  Using Digital Input and Digital output
	4.12  Using the I/O Expansion Bus
	4.12.1 Definition of an I/O Expansion Bus
	4.12.2 I/O Expansion Boards


	5. Applications
	5.1 Embedded Controllers
	5.2 Local Real Time Controller (RTC)
	5.3 Remote Local Controller
	5.4 PLC I/O Expansion Application
	5.5 Radio Modem Application
	5.6 An Application Using 4 COM Ports (1)
	5.7 An Application Using 4 COM Ports (2)

	Appendix A: What is MiniOS7
	Appendix B: MiniOS7 Utility and 7188XW
	MiniOS7 Utility
	7188XW

	Appendix C: Comparison Table
	Appendix D: Library Function List
	Type 1: Standard IO
	Type 2: COM port
	Type 3: EEPROM
	Type 4: NVRAM and RTC
	Type 5: Flash Memory
	Type 6: Timer and Watchdog Timer
	Type 7: Files
	Type 8: Connecting to I-7000/I-87K series module

	Appendix E: Compiling and linking
	Using the TC Compiler
	Using the BC++ Compiler
	Using MSC Compiler
	Using MSVC++ Compiler

	Appendix F: Glossary

